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H I G H L I G H T S

• A straightforward and accurate Li-ion
battery heat generation estimation
method is presented for online usage.

• The method is of strong robustness
against changes in ambient tempera-
tures and convection conditions.

• Heat generation inside a battery cell
regardless of sources are covered.
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A B S T R A C T

Estimation of heat generation in lithium-ion batteries (LiBs) is critical for enhancing battery performance and
safety. Here, we present a method for estimating total heat generation in LiBs based on dual-temperature
measurement (DTM) and a two-state thermal model, which is both accurate and fast for online applications. We
demonstrate that the algorithm can keep track of the heat generation rate in real-time under scenarios of de-
signed multi-stepwise heat generation profile and regular fast charging processes. Moreover, the algorithm re-
quires no knowledge of the thermal boundary conditions, providing robustness against changes in convection
conditions and ambient temperatures. Finally, this method can capture heat generation induced by abnormal
exothermic reactions, which could be a useful tool for detection of battery thermal failures.

1. Introduction

The performance, durability, and safety of lithium-ion batteries
(LiBs) are all closely related to their thermal behaviors [1]. Estimation
of heat generation onboard is critical for understanding the thermal
behaviors of LiBs and for devising strategies to enhance battery life and
safety.

Previous efforts of battery heat generation determination are mostly

experimental. Therein, calorimetry is a favorable approach.
Accelerating rate calorimetry (ARC) [2,3], isothermal heat conduction
calorimetry (IHC) [4], and improved high precision calorimeter [5] are
reported to explore battery thermal behavior. Moreover, unconven-
tional methods such as a multi-sensor fusion method with heat flux
measurement [6] have been designed for the in-situ estimation. How-
ever, these methods are only applicable in laboratory conditions and
difficult to be implemented to onboard applications, such as electric
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vehicles (EVs).
On the other hand, in order to capture heat generation, modeling

methods have been used in the existing literature. The electrochemical-
thermal (ECT) models based on physical principles can calculate heat
generation, including kinetic heat, reversible heat, joule heat, etc. [7,8]
with excellent accuracy. However, they require high computational
costs and are difficult to be implemented in real-world applications.

Therefore, simplified methods are utilized in online situations.
Constant heat generation rate [9], curve fitting technique [10], and
Joule’s Law [11] are extensively used in engineering practices. Never-
theless, these approaches can be over-simplified and lead to significant
errors or a lack of generalization capabilities. Beyond those, the most
used method to date is the simplified equation deduced by Bernardi [2],
which calculates heat generation via I*(OCV-Vcell), where I is current,
OCV is open-circuit voltage, and Vcell is cell voltage. However, due to
the necessity of voltage, current, open circuit voltage (OCV), and state
of charge (SOC), the high estimation accuracy is required for these
primary parameters, and significant errors could occur in practice. In
addition, the modeling methods consider heat generation from known
electrochemical sources via given electrochemical processes or equa-
tions. Hence, unmodeled heat generation behavior or abnormal heat
generation, such as internal short circuits and exothermic side reac-
tions, are unable to be accounted for.

To resolve the drawbacks of existing experimental and modeling
approaches and to address the convenience and accuracy required of
onboard applications, better understanding of battery thermal behavior

is necessary. Also, as automotive battery cells become large in size,
there is usually a significant temperature gradient inside a cell [12].
Therefore, obtaining internal temperatures become necessary. Methods
such as impedance-based estimation by its temperature dependency
[13], model-based estimation algorithm with Kalman filter techniques
[14], or direct measurement using embedded thermal couples [15]
have been widely reported. However, gaining knowledge of internal
temperature is rather limited, and most of the methods mentioned
above are impossible for use in onboard applications.

In this paper, we present a direct and accurate method to estimate
battery heat generation in real-time from a heat transfer perspective. In
order to handle the problem of temperature gradient inside a cell, a
dual-temperature measurement (DTM) structure is proposed. It is mo-
tivated by the self-heating lithium-ion battery (SHLB) [16] and can
measure battery surface and core temperatures simultaneously. The
SHLB has a micron-thin nickel (Ni) foil embedded in the center of a cell,
whose resistance is linear with respect to temperature and can thus
serve as an internal temperature sensor (ITS). More details about the
SHLB structure is given in Section 3.1. Afterward, the temperatures
measured by DTM are incorporated into a two-state thermal model to
estimate heat generation, which achieves a good balance between ac-
curacy and computational cost. The heat generation estimation algo-
rithm is developed by utilizing discretization and inverse model tech-
niques. It can be observed that the proposed algorithm requires no prior
knowledge of thermal boundary conditions and also exhibits strong
robustness against changes in thermal boundary conditions. Moreover,

Nomenclature

Electrochemical-thermal model

Ae electrode area (m2)
c lithium concentration (mol m−3)
cp specific heat (J kg−1 K−1)
D diffusivity (m2 s−1)
F Faraday constant (96487 C mol−1)
h convective heat transfer coefficient (W m−2 K−1)
j volumetric current density (A m−3)
L sum of the anode, separator and cathode thicknesses (m)
Q ̇ total heat generation rate (W)
Qȧpp applied additional heat generation rate (W)
Qėle electrochemical heat generation rate (W)
r coordinate in the radial direction (m)
t time (s)
+t transference number
T temperature (K)
U open circuit potential (V)
x coordinate in the electrode thickness direction (m)
z coordinate in the cell thickness direction (m)

Greek

ε volume fraction
δ cell thickness (m)
κ thermal conductivity (W m−1 K−1)
κeff effective ionic conductivity (S m−1)
κD

eff effective diffusional ionic conductivity (S m−1)
ρ density (kg m−3)
σeff effective electronic conductivity (S m−1)
ϕ phase potential (V)

Superscript and subscripts

avg average

e electrolyte phase
s solid phase

Two-state thermal model

Cc heat capacity of the battery cell core component (J K−1)
Cs heat capacity of the battery cell surface component

(J K−1)
Q ̇ total heat generation rate (W)

̂Q ̇ estimated total heat generation rate (W)
Rc thermal resistance between the core and the surface

component (K W−1)
Ru convective thermal resistance between the surface com-

ponent and ambient (K W−1)
tΔ sampling interval

Tc core temperature (K)
Ts surface temperature (K)

Superscript and subscripts

k kth time step

List of abbreviations

ACT activation
DTM dual-temperature measurement
ECT electrochemical-thermal
EV electric vehicle
FUDS Federal Urban Driving Schedule
ITS internal temperature sensor
OCV open circuit voltage
PSO particle swarm optimization
RMSE root mean squared error
SHLB self-heating lithium-ion battery
SOC state of charge
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the total heat generation of a battery cell is obtained. Thus, abnormal
heat generation can be detected from the estimation results, which is
valuable for early detection of thermal faults and improved battery
safety.

In order to demonstrate the accuracy of the presented method, a
series of simulations are conducted through an experimentally cali-
brated ECT coupled model under conditions of a hypothetically de-
signed multi-stepwise heat generation profile and heat generation in
fast charging cases. The heat generation rates resulting from the ECT
model are taken as theoretical values and are compared with the al-
gorithm estimation values. In addition, the effects of heat convection
conditions and cell thicknesses are explored.

The remainder of this paper is organized as follows: the ECT mod-
eling is presented in Section 2. Section 3 introduces the present heat
generation estimation scheme. Section 4 shows the simulation results
and algorithm evaluation. Section 5 concludes the paper.

2. Electrochemical-thermal model

In this section, an electrochemical-thermal (ECT) model is devel-
oped, which will be used to generate necessary data for parameter
identification of the two-state thermal model and will be employed for
evaluation of estimation results. The ECT model is established in GT-
AutoLion™, a commercial software package for multi-disciplinary li-
thium-ion battery and system simulation and analysis [17]. Moreover,
the ECT model is validated against experimental results, which are
shown in the Appendix A. Charge/discharge with different C-rates and
temperature tests are validated respectively in Figs. A1–A3.

In this research, the modeled lithium-ion battery is a 10Ah pouch
cell, with electrode chemistry of LiNi0.6Mn0.2Co0.2O2 (NMC622)/
Graphite and the electrolyte of 1 M LiPF6 in 3:7 (wt%/wt%) EC/EMC
with 2% wt VC. The dimension of the cell is 130 mm * 75 mm * 10 mm
(length * width * thickness).

2.1. Electrochemical model

By adopting the fully coupled electrochemical model of Gu and
Wang [18], the conservation equations are given by the following Eqs.
(1)–(4):

Charge conservation in solid electrodes:

∇ ∇ =σ ϕ j·( )s
eff

s (1)

where σs
eff is the effective electronic conductivity of solid phase, ϕs is the

electric potential in solid phase, and j is the volumetric current density.
Charge conservation in electrolyte:

∇ ∇ + ∇ ∇ = −κ ϕ κ c j·( ) ·( ln )eff
e D

eff
e (2)

where κeff is the effective ionic conductivity of electrolyte, ϕe is the
electric potential in electrolyte, κD

eff is the effective diffusional ionic
conductivity of electrolyte, ce is the species concentration in electrolyte.

Species conservation in electrolyte:

∂
∂

= ∇ ∇ + − +ε c
t

D c t
F

j·( ) 1e
e
eff

e (3)

in which ε is the volume fraction, De
eff is the effective electrolyte dif-

fusivity, +t is the transference number, F is the Faraday constant.
Species conservation in active material particles:

∂
∂

= ∂
∂

⎛
⎝

∂
∂

⎞
⎠

c
t r r

D r c
r

1s
s

s
2

2
(4)

in which cs is the species concentration in solid phase and Ds is the solid
phase diffusivity, r is the coordinate in the particle radial direction, t is
the time.

Detailed explanations of the above equations can also be found in
the literature [19,20] and therefore are not repeated here. Parameters
of these equations are adopted from the materials database of GT-

AutoLion™.

2.2. Thermal model

For depicting the heat transfer process of a battery cell, a 1D
thermal model is adopted [21]. Governing equations for the thermal
field are given below.

Thermal energy conservation:

∂
∂

= ∇ ∇ +ρc T
t

κ T Q·( ) ̇p (5)

where ρ, cp and κ are density, specific heat capacity, and thermal
conductivity of the cell, respectively, Q ̇ is the heat generation term.
Thermal properties of the pouch battery cell, such as specific heat ca-
pacity and thermal conductivity are employed from the literature [22].

Thermal boundary conditions:

∂
∂

=T
z

t(0, ) 0
(6)

∂
∂

= −∞
T
z

δ t h
κ

T T δ t( , ) [ ( , )]
(7)

where t stands for time, and ∈z δ[0, ] is the spatial coordinate in the
battery cell thickness direction. The origin of the coordinate system lies
in the middle of the cell thickness and δ represents half of the cell
thickness. h is the convective heat transfer coefficient.

Heat generation from electrochemical effects is given as [18]:

∫ ⎜ ⎟= ⎡

⎣
⎢

⎛
⎝

∂
∂

⎞
⎠

+ − − + ∇ ∇ + ∇ ∇

+ ∇ ∇ ⎤

⎦
⎥

Q

A j T U
T

j ϕ ϕ U σ ϕ ϕ κ ϕ ϕ

κ c ϕ dx

̇

( ) · ·

ln

ele

e
L

s e s
eff

s s
eff

e e

D
eff

e e

0 avg
avg

(8)

where Ae is the electrode area, L is the sum of the anode, separator, and
cathode thickness, Tavg is the average temperature of the battery cell.

The ∂
∂( )j T U

Tavg avg
term shows the reversible heat, the − −j ϕ ϕ U( )s e term

represents kinetic heat, the ∇ ∇σ ϕ ϕ·s
eff

s s, ∇ ∇κ ϕ ϕ·eff
e e and ∇ ∇κ c ϕlnD

eff
e e

term indicates joule heat from electronic resistance, ionic resistance and
concentration overpotential, respectively. More detailed explanations
for the above heat generation equation can also be referred to Ref. [19].

2.3. Treatment of performing extra given heat generation rate

Battery normal heat generation is a result of the loading current
during operation. However, the amplitude of the electrochemical heat
generation rate also depends on cell dimensions, SOCs, and even cell
temperatures. In order to provide an unbiased comparison and discus-
sion between different case studies, a consistently designed heat gen-
eration profile is needed, and an extra given heat generation rate Qȧpp is
applied to compose the total heat generation of the battery cell.
Therefore, the total heat generation rate is given by:

= +Q Q Q̇ ̇ ̇ele app (9)

Note that when battery cell has no current flowing through, =Q ̇ 0ele ,
and hence =Q Q̇ ȧpp.

3. Heat generation estimation scheme

3.1. Dual-temperature measurement method

In this subsection, a dual-temperature measurement (DTM) method
is presented, which provides necessary core and surface temperature
information for estimation of the battery heat generation. DTM is im-
plemented via the SHLB structure elaborated earlier [16].
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In brief, SHLB is a novel battery structure developed and researched
in the past few years, as shown in Refs. [16,23]. It can perform self-
heating and take a battery from sub-freezing temperatures to its optimal
operating range within tens of seconds. The structural design of SHLB is
shown in Fig. 1a. A thin piece of nickel (Ni) foil is embedded in the
center of a pouch cell. One end of the Ni foil is welded with the anode
tabs and connected to the negative terminal; the other end extends
outside the cell to form a third terminal called the activation (ACT)
terminal. A switch is added in between the positive and ACT terminals.
When the switch is closed (see Fig. 1b), a large current will flow
through the Ni foil, creating immense and uniform heat that can rapidly
warm up the battery.

In addition to the capability of rapid heating, the embedded Ni foil
provides as the function of an internal temperature sensing (ITS) as the
foil resistance linearly varies with temperature [24], as plotted in
Fig. 1c. Additionally, a cell’s surface temperature can be readily ob-
tained with routine methods such as thermocouples or thermal-re-
sistors. Consequently, the DTM structure can be realized with the
combination of both core and surface temperature measurements.

3.2. Two-state thermal model

In tandem with the dual-temperature measurements, a two-state
thermal model is employed for the heat generation estimation scheme.
On one hand, compared with a differential equation thermal model, the
two-state thermal model is only composed of two lumped components
and therefore is more efficient for online applications. On the other
hand, the two-state thermal model can capture better cell heat transfer
behavior than the single-state lumped model for EV type battery cells,
of which the Biot number is large and therefore significant temperature
difference arises between the battery core and surface. In such a case,
the single-state lumped model would be inaccurate. A two-state thermal
model was firstly developed for cylindrical cells [25], and was more
recently utilized for e.g. battery fault diagnosis [26] and capacity es-
timation [27]. In this study, the model is extended to accommodate a
pouch cell configuration. The schematic of the two-state model for
pouch cell is shown in Fig. 2.

In the two-state thermal model, there are two lumped parts: the core
component, which stands for electrode/separator stacks, and the sur-
face component, which stands for cell package. Core temperature, Tc,
and surface temperature, Ts, are the two states of the system. Heat
transfer features are modeled as a conductive thermal resistance be-
tween the core and the surface components, denoted as Rc, and a
convective thermal resistance between the surface component and the
ambient, denoted as Ru. Cc and Cs are heat capacity of the core and
surface component, respectively. Tf is the temperature of the ambient
air/liquid flow. The heat generation rate, denoted as Q ̇, occurs only in
the cell core component, which complies with the real cases. The

governing equations of the two-state thermal model are shown in Eqs.
(10) and (11):

= − +C T T T
R

Q̇ ̇c c
s c

c (10)

= − − +
−

C T T T
R

T T
R

̇s s
s c

c

f s

u (11)

3.3. Heat generation estimation algorithm

In this subsection, the heat generation estimation algorithm is pre-
sented with the proposed two-state thermal model using discretization
and inverse model techniques.

The normal two-state thermal model takes the ambient temperature
Tf and heat generation rate Q ̇ as inputs and gives core temperature Tc
and surface temperature Ts as outputs. On the contrary, in our task, the
heat generation rate is to be solved. This situation yields an unknown
input reconstruction problem, which can be described as: the known
input (heat generation rate) needs to be reconstructed using the in-
formation of measured outputs (core and surface temperatures) and the
known input (ambient temperature).

Therefore, to address the issue, the two-state thermal model needs
to be inverted to exchange the assignment of the inputs and outputs. As
shown in Fig. 3, the inverse model takes both known inputs and outputs
to estimate the unknown input heat generation rate, denoted as ̂Q ̇ . The
estimation error Q

~̇
is given in the following equation:

Fig. 1. [24] (a) Illustration of the SHLB structure (b) Equivalent circuit that illustrates the SHLB heating mechanism (c) Linear relationship between Ni foil resistance
and temperature which enables temperature sensing of the battery core area.

Fig. 2. Schematic of the two-state thermal model.
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̂= −Q Q Q
~̇ ̇ ̇ (12)

An inverse heat transfer problem focuses on using measurements of
the system states to determine one or several characteristics causing
such states [28]. However, the inverse of a differential equation may
have ill-posed solutions. Hence, to avoid this defect, the discretization
technique is applied to the two-state thermal model, which transforms
the ordinary differential equations into linearized algebraic equations.
After the discretization with zero-order hold, the governing equations
of the two-state thermal model (Eqs. (10) and (11)) turn into the fol-
lowing:

⎜ ⎟= + − ⎛
⎝

− ⎞
⎠

− ++T T Q R t
C R

T T Q Ṙ exp Δ ( ̇ )c k s k k c
c c

s k c k k c, 1 , , ,
(13)

=
+ − −

+ − + −+
+( )

T
R T R T

R R C R R R T R T R T R T

exp

( )[ ( )]s k
c f k u c k

t
R R

c u s c u c f k c s k u c k u s k
, 1

, ,
Δ

, , , ,

c u

(14)

where the subscript k stands for values from the kth sampling and tΔ is
the sampling interval.

From the discretized two-state thermal model, it is noted that the
heat generation rate can be deduced by only using Eq. (13) with alge-
braic operations. Subsequently, the estimated heat generation rate for
the kth step is expressed as:

̂ =
− − − ⎡

⎣
− − ⎤

⎦
⎡
⎣

− − ⎤
⎦

+ ( ) ( )
( )

Q
T T T

R
̇

exp 1 exp

1 exp
k

c k c k
t

C R s k
t

C R

c
t

C R

, 1 ,
Δ

,
Δ

Δ

c c c c

c c (15)

With the presented inverse model, the heat generation estimation
process is listed in Table 1.

It can also be noticed that Tf and Ru terms are absent from the heat
generation estimation equation, Eq. (15). Therefore, the estimation
algorithm will not be affected by thermal boundary conditions, i.e.,
ambient temperature and convection conditions. This feature comes
from the fact that the surface temperature measurement already con-
tains the information from the thermal boundary. This characteristic is
very important for the feasibility and robustness of the heat generation
estimation algorithm, because some thermal boundary conditions can
change from time to time, and in most cases, are hard to be tracked,
especially for onboard applications. Examples are a battery system

equipped with a fan cooling system where the fan speed is adjustable or
a liquid cooling system that starts to operate from idle mode. Although
empirical values of convective heat transfer coefficient are often uti-
lized for approximate analysis, however, when it comes to quantitative
estimation, such a method can cause significant errors. Therefore, the
robustness against dependency on thermal boundary conditions is im-
portant for the online heat generation estimation algorithm.

Certain simplifications and assumptions made in the algorithm are
worthy noting:

(a) Measurement noises are not considered;
(b) The temperature dependency of the two-state thermal model

parameters is neglected.

It should also be noted that despite the estimation equation Eq. (15)
does not rely on ambient temperatures; thermal properties of the bat-
tery can vary with temperature changes. Hence, two-state thermal
model parameters can be identified for different temperature ranges if
necessary.

4. Results & discussion

4.1. Two-state thermal model parameter identification

Before digging into the estimation results of heat generation, the
two-state thermal model needs to be parameterized. Here, the proposed
ECT model is exploited to generate the necessary data set. A stepwise
heat power profile of 5 W is designed as the input to the ECT model, see
Fig. 4a. The ECT model output data of core and surface temperature
corresponding to this stepwise heat generation profile are recorded, as
plotted in Fig. 4b. Eventually, the parametrization data set can be
composed of the heat generation input and two temperature outputs. It
can be noted that, during this heating period, the battery cell is neither
charged nor discharged; therefore, no electrochemical heating occurs. It
is also worth noting that such an approach can also be realized ex-
perimentally with SHLB. The simulation is conducted under an ambient
temperature of 25℃ with natural air convection, where the convective
transfer coefficient is chosen as =h 7W/(m ·K)2 . The initial temperature
of the battery cell is also 25℃.

In order to identify the optimum parameters, the particle swarm
optimization (PSO) algorithm [29,30] is adopted here, which has the
advantage of good capability for global optimization and easy im-
plementation. The algorithm works with a group of particles standing
for the solution vectors, which are located in the problem space with
random initial values. Along with the iteration proceeds, particles are
moving towards the global minimum, driven by the cost function J .
While a particle is approaching the optimum solution, the velocity v
and position x are updated every iteration step using the following
equations, respectively:

= + − + −+v wv c p x c g x( ) ( )i
k

i
k

i
k

i
k

i
k

i
k1

1 2 (16)

= ++ +x x vi
k

i
k

i
k1 1 (17)

where the subscription i and the k denotes the property for the ith

particle at kth iteration, p is the particle best solution, g is the global
best solution, w is the inertia constant, which is usually defined be-
tween [0.7, 0.8], c1 and c2 are acceleration constants which are set

Fig. 3. Schematic of the heat generation estimation algorithm using inverse
model method.

Table 1
Heat generation estimation process.

Steps Content

Step 1 At time step k , measurement of Tc and Ts are updated and held for the +k 1th estimation.
Step 2 At time step +k 1, measurement value of Tc and Ts are updated and held for the +k 1th and +k 2th estimation.
Step 3 At time step +k 1, kth and +k 1th measurements of Tc and Ts are taken by the heat generation estimation algorithm and update the estimation of ̂Qk̇ .
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between[0, 2]; see Refs. [31,32].
For the two-state thermal model parameterization, the cost function

J is defined in Eq. (18):

̂ ̂
⎜ ⎟ ⎜ ⎟= ⎧

⎨⎩

⎛
⎝

− ⎞
⎠

+ ⎛
⎝

− ⎞
⎠

⎫
⎬⎭

J T T
T

T T
T

min c c

c

s s

s

2 2

(18)

where Tc and Ts are the theoretical values from the ECT model, while ̂Tc
and ̂Ts are the estimation value given by the two-state thermal model.
The identified parameters are listed in Table 2.

After the parameters are identified, the two-state thermal model is
further applied to the Federal Urban Driving Schedule (FUDS) profile
for validation, as shown in Fig. 5a. The ECT model is utilized here to
simulate the electrochemical and thermal behaviors of a real battery.
Under FUDS power profile, the heat generation response is recorded,
and the dual-temperature responses are also stored and treated as
theoretical values. The two-state thermal model takes the heat gen-
eration values to calculate the corresponding temperature responses,
which are compared with theoretical values. In Fig. 5b, the theoretical
value T from the ECT model and estimation value ̂T from the two-state
thermal model of the core and surface temperatures are compared. The
modeling error T~ is given as:

̂= −T T T~ (19)

and its results for core and surface temperatures are shown in Fig. 5c. It
can be seen that the two-state thermal model matches well with the ECT
model data. The maximum error is within 0.1 °C, when the battery
temperature rise is around 3 °C, thus indicating a proper description of
the battery thermal behavior.

4.2. Algorithm evaluation

With the completely defined and parameterized two-state thermal
model, it is feasible to achieve heat generation estimation with DTM
inputs, using Eq. (15). In order to evaluate the performance of the
presented heat generation estimation algorithm, in this subsection, two
simulation cases are introduced. Case (1) is aiming to use an artificially
designed heat generation profile to activate the dynamic response of the
estimation algorithm. Case (2) is focusing on the simulation of battery
fast charge processes, which are highly related to battery safety issues.
Charging rates of 1C, 3C, and 5C are investigated.

In each case, simulations are conducted with the ECT model,
through which: (1) dual-temperature measurements are acquired to be
the inputs of the algorithm; (2) Heat generation rate is extracted to set a
theoretical standard for algorithm evaluation. The heat generation

estimation algorithm is performed under MATLAB/Simulink™ en-
vironment.

All simulation cases are conducted under the ambient temperature
of 25 °C, with the initial battery temperature of 25 °C as well. The
convective heat transfer coefficient is set to =h 7W/(m ·K)2 , mimicking
a cooling condition of natural air convection.

4.2.1. Designed heat generation profile case
The designed heat generation profile is composed of multiple step-

wise heat generation signals with amplitudes between 1 W and 5 W, as
shown detailly in Table 3. The corresponding estimation result is
plotted in Fig. 6a. The black line shows the theoretical heat generation
rate profile, and the red symbol describes the estimation values. It can
be seen that the estimation results match well with the theoretical data,
proving that the proposed algorithm can capture battery heat genera-
tion characteristics of different amplitude very well. Furthermore,
during the transient process of the step change, the estimation results
respond fast with unnoticeable delay.

In Fig. 6b, the estimation error and relative error are plotted. It can
be noticed that, at the instant of the step change, the transient behavior
can lead to spike-like estimation errors due to estimation delay. How-
ever, it can be seen that the algorithm can follow the theoretical value
after seconds, which does not affect the steady-state estimation errors.
Therefore, in the following text, the discussion of absolute estimation
errors and relative errors excludes the initial spike effects. It can be
observed from Fig. 6b that the estimation error is within ± 0.06W range
for the heat generation profile with the peak power of 5 W, or 1.2%. In
addition, the relative estimation error for non-zero heat generation
rates are within ± 5% range, and the root mean squared error (RMSE)
is 0.029 W, for the entire profile duration. It can be noticed that, al-
though the spike errors are trivial for its short period, the amplitude is
high and can be harmful in digital signal processing procedures. Thus,
adequate filter algorithms could be further applied to mitigate such
errors.

Fig. 4. Data set generated by the ECT model for two-state thermal model parameter identification (a) Input data set: heating power (b) Output data set: cell core
temperature and surface temperature responses.

Table 2
Parameters of the two-state thermal model.

Parameters Value

Cc 249.73 J/K
Cs 0.17 J/K
Rc 0.52 K/W
Ru 7.26 K/W
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4.2.2. Constant current charge case
In this subsection, cases with different C-rates of charge are ex-

amined. 1C, 3C, and 5C fast charging scenarios are selected for their
considerable heat generation and greater safety concern. In these cases,
the heat generation results for different C-rates are presented in Fig. 7a.
The theoretical values are exported from the ECT model and shown in
lines whilst the estimation values are shown in symbols. It can be found
that the curves of estimation can keep good track of the theoretical ECT
model in all three cases. In order to evaluate quantitatively, estimation
errors and relative errors for each subcase are plotted in Fig. 7b–d and
observed within ± 0.05W, ± 0.1W and ± 0.2W range for 1C, 3C, and 5C
charge rate cases, respectively. Moreover, the relative estimation errors
for 1C, 3C, and 5C cases are within ± 10% , ± 2.5% and ± 2% range
after a short initial fluctuation. In addition, the RMSE are 0.010 W,
0.029 W and 0.029 W each. It can be seen that, with a larger current,
which also means a larger heat generation rate, the absolute error in-
creases, but the relative error further decreases. This indicates the ab-
solute error grows with the signal amplitude, but the degree of growth

of absolute error is smaller than that of the signal amplitude. Therefore,
the estimation method could be more accurate for large heat generation
cases.

It can be concluded that the case study shows a precise estimation
performance of the algorithm under fast charging circumstances. By
doing so, battery charging safety can be further monitored, and thermal
runaway accidents may be prevented by further taking advantage of
such a fault detection technique.

4.3. Effects of different convection conditions

From the expression presented in Eq. (15), one can see that the heat
generation estimation algorithm works regardless of the thermal
boundary conditions. In this subsection, the effects of different con-
vection conditions are simulated and discussed; the robustness of the
algorithm is verified.

In order to evaluate the estimation performance against changes in
convection conditions, three cases are employed with different con-
vective heat transfer coefficients, h. The base case that simulates the
natural air convection case with =h 7W/(m ·K)2 has already been
shown in the previous Section 4.2.1. After that, case (1) uses

=h 20W/(m ·K)2 to realize an air turbulent flow situation and case (2)
utilizes =h 57W/(m ·K)2 to study the case of liquid cooling condition
[33]. All three cases use the same set of two-state model parameters, as
displayed in Table 2, which are identified under the base case condi-
tion.

In this case study, the designed multi-stepwise heat generation
profile is adopted for the ECT simulation rather than a current input
profile. The reason is that battery heat generation caused by its

Fig. 5. Two-state model validation results with FUDS profile (a) FUDS current profile (b) Core temperature and surface temperature validation results (ECT model
values are marked with “theoretical”, and two-state thermal model values are marked as “model”) (c) Modeling errors of the two-state thermal model.

Table 3
Designed heat generation rate profile.

Time (s) Heat generation rate (W)

100 0
300 0.5
500 1
700 5
900 3
1000 0

Fig. 6. (a) Estimation result for the designed heat generation profile (b) Estimation error and relative error.
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electrochemical reaction is highly coupled with temperature, which can
be further influenced by different thermal boundary conditions.
Therefore, such an effect can lead to incomparability between cases.
Using a defined heat generation profile could eliminate this problem
and decouple the heat generation rate from cell temperature, thus
achieving valid comparisons.

As can be seen from Fig. 8a and c, with a wide range of convection
conditions, the estimation results for case (1) and (2) still show ex-
cellent match of the given heat generation rate profile and perform
uniformly with the base case, which proves the independency on heat
convection condition of the algorithm. In addition, as shown in Fig. 8b
and d, estimation errors are within ± 0.1W range, while the amplitude
range of the theoretical value is from 0 W to 5 W, except for the spike-
like errors. The relative estimation error for non-zero heat generation
rate values in case (1) and (2) are both within± 3%, and the RMSEs are
0.017 W and 0.022 W each. The error ranges are quite small and also at
the same level as the base case, where the absolute error, relative error,
and RMSE are within ± 0.06W, ± 5% range, and 0.027 W, respectively.

4.4. Effects of cell thickness

To date, EV type batteries are characterized by high energy density
and high capacity. High-capacity active materials meet such needs on
one hand. On the other hand, thick electrodes are used and cell thick-
ness and volume increase. For large scale batteries, the internal tem-
perature distribution can be non-uniform, hence whether the two-state
model is applicable to those EV batteries of different thickness is an

open question.
As introduced earlier in Section 3.2, the two-state thermal model is

an improved lumped model. Therefore, in this subsection, simulation
evaluation is conducted to perceive if cells with different thicknesses
can be well modeled. Other than the base case cell thickness of 10 mm,
the study is extended to cover cell thicknesses of 30 mm and 50 mm. It
is worth noting that, with the increase of cell thickness, a cell also gains
more thermal mass. Therefore, parameters for each cell thickness are
re-identified using the same method introduced in Section 4.1. The
identified parameters are presented in Table 4. The validation method
is identical to that used in Section 4.3. Fig. 9a and c show the estimation
results for both 30 mm- and 50 mm-thick cells by using respective
models. It can be seen that, although subject to the assumption of only
two thermal states, the model still shows excellent estimation perfor-
mance for the above-studied cell thicknesses, which can cover a large
portion of EV type battery cells. The estimation errors for both cases, as
shown in Fig. 9b and d, are within ± 0.05W and the relative estimation
errors for non-zero heat generation rate are within ± 6% and ± 8% for
30 mm- and 50 mm-thickness case, respectively, and the RMSEs are
0.012 W and 0.014 W each. Although it can be noticed that the esti-
mation fluctuations for thicker cells become more apparent, probably
due to larger heat capacity. The algorithm can still follow with rea-
sonable precision, with low overall RMSE. Under this circumstance,
measurement noise could become more significant in practice and
therefore need to be controlled by filtering techniques.

Fig. 7. (a) Estimation results for constant current charge with 1C, 3C and 5C rates (b) Estimation error and relative error for 1C charge (c) Estimation error and
relative error for 3C charge (d) Estimation error and relative error for 5C charge.
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5. Conclusions

We have presented an online heat generation estimation method for
lithium-ion battery cells, based on dual-temperature measurement and
a two-state thermal model with high accuracy, robustness, and gen-
eralizability. The DTM method is proposed to: (1) turn the internal
temperature into an accessible measurement for online applications;
and (2) deal with the temperature gradient inside a battery.
Subsequently, the two-state thermal model has been adopted to derive
the heat generation estimation equation with discretization and inverse
model techniques.

Through computational studies using the experimentally calibrated
ECT model, the effectiveness of the proposed heat generation estima-
tion algorithm has been validated with both designed heat generation
rate profile case and fast charging cases. In the designed heat genera-
tion rate profile case, the proposed algorithm could keep good track of

multiple step-wise signals with different amplitudes, where the relative
estimation error was ± 5%, and RMSE was 0.027 W. Due to the highly
focused safety issue during fast charging, cases of 1C, 3C, and 5C
charging rates are investigated, where the presented algorithm can keep
the relative estimation error within ± 10% , ± 2.5% and ± 2% range
and RMSE of 0.010 W, 0.029 W and 0.029 W for each case. It is found
that the algorithm could attain better accuracy for higher C-rates,
which are riskier occasions demanding thermal fault detection.

Robustness of the algorithm is also verified under different con-
vection conditions. Good prediction of the given heat generation rate is
demonstrated for the natural air convection, turbulent air cooling, and
liquid cooling scenarios. Except for the base case of natural convection,
the relative estimation errors are all within ± 3% range, and the RMSEs
are 0.017 W and 0.022 W for turbulent air cooling and liquid cooling
conditions, respectively, showing adequate robustness against changes
in convection conditions. Moreover, the generalizability to thick battery
cells has also been evaluated. With individually identified parameters,
30 mm- and 50 mm-thick battery cells are simulated. Supported by the
relative estimation errors within ± 8% and the RMSEs of 0.012 W and
0.014 W for 30 mm and 50 mm case, the algorithm can be generalized
to a wide range of battery thickness designs.

There are three advantages arising from the present method: (1)
Heat generation can be estimated regardless of its source; thus, the
abnormal heat generation can be included, which is valuable for im-
proving battery safety. (2) No knowledge of thermal conditions is re-
quired, further achieving the robustness against thermal boundary

Fig. 8. Estimation results under different cooling conditions Case (1): convective heat transfer coefficient of 25 W/(m2·K) for turbulent air cooling (a) Heat gen-
eration estimation result (b) Estimation error and relative error Case (2): convective heat transfer coefficient of 57 W/(m2·K) for liquid cooling (c) Heat generation
estimation result (d) Estimation error and relative error.

Table 4
Two-state thermal model parameters identified for different cell thicknesses.

Parameters 30 mm 50 mm

Cc 756.53 J/K 1275.6 J/K
Cs 0.15 J/K 0.14 J/K
Rc 1.54 K/W 3.13 K/W
Ru 7.09 K/W 8.64 K/W
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condition variations. (3) The algorithm can be generalized to different
battery cell designs. Also, while the present work is focused solely on
single cells, the present heat generation estimation method is expected
to be applicable to battery modules and packs. This is because the DTM
method is rooted in the SHLB structure, which has already been used in
modules and packs deployed in real-world vehicles [34].

Nevertheless, there are still deficiencies in the present method

which need to be addressed in future work. The method requires further
experimental evaluation in a physical build. Also, measurement noises
are not considered in this study but can become challenging in practice.
Therefore, online noise reduction and filtering methods need to be
exploited in future research.

Fig. 9. Estimation results with different cell thicknesses using two-state thermal model parameters shown in Table 4 for each case. Case (1): 30 mm cell thickness (a)
Heat generation estimation result (b) Estimation error and relative error Case (2): 50 mm cell thickness (c) Heat generation estimation result (d) Estimation error and
relative error.

Fig. A1. Room temperature charge validation.
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Appendix A. Electrochemical-thermal model validation against experimental results

See Figs. A1–A3.
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