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Model-Based Electrochemical Estimation and
Constraint Management for Pulse Operation of

Lithium Ion Batteries
Kandler A. Smith, Christopher D. Rahn, and Chao-Yang Wang

Abstract—High-power lithium ion batteries are often rated with
multiple current and voltage limits depending on the duration of
the pulse event. These variable control limits, however, are diffi-
cult to realize in practice. In this paper, a linear Kalman filter
based on a reduced order electrochemical model is designed to
estimate internal battery potentials, concentration gradients, and
state-of-charge (SOC) from external current and voltage measure-
ments. A reference current governor predicts the operating margin
with respect to electrode side reactions and surface depletion/satu-
ration conditions responsible for damage and sudden loss of power.
The estimates are compared with results from an experimentally
validated, 1-D, nonlinear finite volume model of a 6 Ah hybrid elec-
tric vehicle battery. The linear filter provides, to within 2%, per-
formance in the 30%–70% SOC range except in the case of severe
current pulses that draw electrode surface concentrations to near
saturation and depletion, although the estimates recover as concen-
tration gradients relax. With 4 to 7 states, the filter has low-order
comparable to empirical equivalent circuit models commonly em-
ployed and described in the literature. Accurate estimation of the
battery’s internal electrochemical state enables an expanded range
of pulse operation.

Index Terms—Electrochemical model, lithium ion battery,
model reduction, reference governor, state-of-charge (SOC)
estimation.

I. INTRODUCTION

M ODEL-BASED battery monitoring algorithms enable
efficient and reliable integration of batteries into hy-

brid electric vehicle (HEV) powertrains. Examples include the
generalized recursive least squares algorithm of Verbrugge et
al. [1] and the extended Kalman filter algorithm of Plett [2].
Both algorithms use an assumed empirical battery model to pre-
dict state-of-charge (SOC) and maximum pulse power avail-
able within some fixed, predetermined voltage limits. In pulsed-
power applications, fixed current/voltage limits can be overly
conservative, particularly for short-duration, high-rate current
pulses that give rise to large ohmic voltage perturbations [3].
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Manufacturers sometimes rate high-power batteries with mul-
tiple current/voltage limits that depend on the duration of the
pulse event [4]. These control limits are difficult to realize in
practice.

For lithium ion (Li-ion) batteries, the 1-D model of Doyle
et al. [5], [6], derived from porous electrode and concentrated
solution theories, captures relevant solid-state and electrolyte
diffusion dynamics and accurately predicts current/voltage
response. The model also predicts physical limits of charge and
discharge, namely, saturation/depletion of Li concentration at
the electrode surfaces, , and depletion of Li concentration
in the electrolyte solution, . To avoid sudden loss of power,
a control algorithm must maintain Li concentrations within
constraints

To avoid damaging side reactions, the solid/electrolyte phase
potential difference, , must be maintained within
constraints

where is the equilibrium potential of a side reaction
occurring when Li ions are either inserted into or deinserted
from active material particles.

The reference governor [7] is an effective method to control
a system within constraints and has been used, for example,
to prevent fuel cell oxygen starvation by dynamically limiting
fuel cell load current [8]. In the case of a battery, in which in
situ measurement of internal concentration and potential is not
possible, proximity to internal constraints must be estimated
using current and voltage measurements. Derivation of a dy-
namic electrochemical model suitable for battery state estima-
tion is difficult, however, given the infinite dimensionality of the
underlying partial differential equation (PDE) system. By spa-
tially discretizing the PDEs, distributed parameter-type estima-
tion algorithms have been developed for the lead-acid battery
[9] and the nickel-metal hydride battery [10], though with high
order (30–100 states) in comparison to the more commonly used
equivalent circuit model-based algorithms (2–5 states).

Recently, the authors used a model order reduction technique
to develop a low- ( 7th) order Li-ion battery model in state vari-
able form [11], [12] directly from the physical governing equa-
tions of Doyle et al. [5], [6]. This work employs that model in
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Fig. 1. Schematic of Li-ion battery during discharge.

a linear state estimation and reference governor algorithm rel-
evant for pulse power applications in which batteries are oper-
ated in a moderate SOC range. SOC estimates and pulse current/
power limits are demonstrated, using a high-order nonlinear fi-
nite-volume model (FVM) of a 6 Ah HEV cell to simulate the
plant.

II. MODEL AND FILTER EQUATIONS

Fig. 1 shows a schematic of the 1D battery model [5], [6],
[11]. During discharge, Li ions diffuse to the surface of carbon
particles in the negative electrode where they react and transfer
to an electrolyte solution. The positively charged ions travel via
diffusion and migration through the electrolyte solution, where
they again react and diffuse into metal oxide active material
particles. Electrons, produced in the negative electrode reaction
and consumed in the positive electrode reaction, are blocked by
the electronically insulating separator and instead must travel
through an external circuit.

A. Infinite-Dimensional Time Domain Model

The electrochemical model parameters are defined in Table I.
The 1-D electrochemical model consists of four PDEs de-
scribing the conservation of Li in the solid phase (written for a
spherical active material particle with reaction current from
the surface)

(1)

(2)

conservation of Li in the electrolyte phase

(3)

TABLE I
MODEL PARAMETERS FOR 6 AH LI-ION HEV BATTERY

(4)

conservation of charge in the solid phase (active material
particle/binder matrix)

(5)

(6)

and conservation of charge in the electrolyte phase

(7)

(8)

The four PDEs are coupled by the Butler–Volmer equation de-
scribing the reaction current at the solid/electrolyte interface

(9)

as a function of overpotential

(10)
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In (10), note that the phase potential difference must overcome
the equilibrium potential of the electrode surface
in order to drive the reaction current in (9). Voltage measured
across the battery terminals

(11)

includes an empirical contact resistance between the electrode
and current collector.

Under sustained discharge, , concentration and poten-
tial gradients reduce the electromotive force of the bat-
tery. At complete equilibrium (which may take hours to achieve
following even a brief discharge or charge event), all gradients
relax , and (11) reduces to the
so-called open-circuit voltage

(12)

The battery’s available stored charge or is determined by
the average concentration of Li in each electrode. Equation (12)
can be expressed solely as a function of battery using con-
servation relationships. Lumping each electrode and applying
(solid-phase) Li and charge conservation provides a linear rela-
tionship between the negative and positive electrode-averaged
concentrations

(13)

valid at all times. For estimation purposes, the electrode-aver-
aged concentrations are normalized and written as a linear func-
tion of

(14)

where is the dimensionless solid-state Li concen-
tration (henceforth, stoichiometry) of each electrode, and
and are reference values at 0% and 100% , respec-
tively. Note that, by substituting the time derivative of (14) into
(13), one recovers the ampere-hour integration-type definition
of more commonly found in the estimation literature

(15)

where is the used capacity
window of each electrode, also equivalent to overall battery
capacity.

B. Infinite-Dimensional Impedance Model

As a preliminary step to model order reduction, transfer func-
tion/matrix solutions are derived with current as input and elec-
trochemical field variables as outputs. Solutions for individual
field variables are then combined to predict battery voltage.

The solid-state diffusion impedance of a single spherical elec-
trode active material particle is [13]

(16)

where , and the overbars indicate Laplace trans-
formed variables. Dimensionless impedance of an elec-
trode is [14]

(17)

In the present work, equilibrium potential and charge
transfer resistance are each linearized at the 50%

rest condition.
Define dimensionless electrode position as , where

is the current collector interface and is the separator
interface. For current applied at the battery terminals, the
authors derived 1-D transcendental functions [12] for reaction
rate

(18)

overpotential

(19)

electrode surface minus bulk concentration difference

(20)

and electrode bulk concentration

(21)

Equations (18)–(21) are written for the negative electrode and
are derived under the assumption of uniform electrolyte concen-
tration. For the positive electrode, one can multiply the right-
hand sides of (18)–(21) by 1.

Analytical solutions for electrolyte concentration and poten-
tial are unduly cumbersome. Spatial discretization of (3) and (4)
followed by Laplace transformation yields the transfer matrix

(22)

In (22), , , and are the stiffness, mass, and forcing
matrices defined by the finite element method, and and

are vectors representing field variables and
at discrete node points . Similar treatment of (7) and

(8) yields the transfer matrix

(23)
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The complete current/voltage impedance model is

(24)

with respective terms related to dynamics, negative elec-
trode solid diffusion dynamics, positive electrode solid diffu-
sion dynamics, electrolyte diffusion dynamics, and contact re-
sistance static impedance.

Though the solution is not presented here, it is possible to ob-
tain an analytical infinite series solution for (24). The solution
can be made rational by discarding terms having either small
magnitude or high frequency [11]. The present vehicular appli-
cation requires bandwidth of 0 to 10 Hz. Within this limited
frequency range, however, a truncated version of the impedance
model (24) still has tens of thousands of terms with distinct
eigenvalues and nonnegligible residues. For practical applica-
tion, its order must be further reduced.

C. Reduced-Order State Variable Realization

Following the procedure in [11], a full-order transfer matrix
is reduced to

(25)

with steady-state vector obtained from the full-order model
as , and poles and residue vectors

numerically generated by minimizing the cost function

(26)

across frequency range , where is the model
cutoff frequency chosen by the designer. The reduced-order
single-input, multiple-output (SIMO) state variable model

(27)

with input , output , and state variable vector , is constructed
with

(28)

Eigenvalues are . Static constant gives output the
proper value at the linearization point. In the following, we drop
the symbol from the reduced model, for brevity.

The model order reduction procedure has the effect of
grouping together or lumping modes that have similar eigen-
values. The lumped modes reasonably reproduce the diffusion
system’s smoothly varying frequency response. The authors
also introduced a rule-based modal grouping method [11]
to obtain (25); however, the analytical treatment required by
that method makes it cumbersome when dealing with the full
battery model (24). By comparison, frequency simulation is
straightforward and a minimized cost function (26) is therefore
preferred.

The reduction procedure requires that transfer functions have
finite steady state, a condition satisfied by each of the infinite-
dimensional diffusion terms of the voltage/current model, that
is, terms two through five of (24). The first term of (24), related
to , has a single eigenvalue at the origin and is not reduced.
Note that grouping the two electrodes’ bulk solid concentration
dynamics together in a single term is necessary to make
the linear model observable.

In [12], the voltage/current state variable model was con-
structed by separately fitting transfer functions for negative
electrode solid diffusion, positive electrode solid diffusion,
and electrolyte diffusion dynamics, giving model states

. In cases in which eigenvalues for the
negative and positive electrode states are closely matched,
however, we find that positive and negative electrode diffusion
dynamics may share the same set of eigenvalues, , with
little loss in accuracy. Taking this approach, model states are

in this work.

D. Kalman Filter

The standard Kalman filter formulation assumes that the plant
contains process noise and measurement noise in the form

(29)

State estimates are calculated from sensor measurements
and as

(30)

The optimal filter gain is precalculated offline as a function
of process noise covariance , measurement noise covariance

, and process noise input matrix to minimize the steady-
state error covariance

(31)

E. Reference Current

State estimate is used to predict a limiting current such
that at future time , internal battery parameter (i.e., a
concentration or potential) will reach limiting value (satu-
ration/depletion, side reaction, etc.). For constant , the linear
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state equation may be integrated forward in time with explicit
solution. The limiting current available for seconds is

(32)
For the present system with

(33)
Note that for this single-output system the square-bracketed
term in (32) is scalar and no matrix inversion is required.

III. RESULTS AND DISCUSSION

Compared with empirical-based estimation algorithms [1],
[2], the present electrochemical-based algorithm is complex and
requires numerous model parameters. Electrochemical param-
eter identification [15], [16] is not discussed in this paper. The
electrochemical algorithm is motivated by the fact that HEV bat-
tery packs, costing thousands of dollars per vehicle, are not used
to their full power and energy capability because of the uncer-
tainty about when damage or a sudden loss of power may occur
in the real-time environment. The objective of the present mod-
eling study is to demonstrate a practical method of controlling a
battery to internal physiochemical constraints, thereby enabling
an expanded range of power capability.

The battery simulated is a 6 Ah Li-ion cell, part of a 72-cell,
276 V nominal battery pack (45 kg, 37 L, 25 kW/18 s pulse dis-
charge) built for the U.S. Department of Energy FreedomCAR
program [17]. In previous work, the authors identified and vali-
dated a 313th-order nonlinear finite-volume model against con-
stant current, transient pulse current, and driving cycle experi-
mental data [18]. Model parameters for the 6 Ah cell are given
in Table I. The authors subsequently formulated the low-order
state-variable model (SVM) and validated it against the high-
order FVM [12]. In this work, the nominal SVM uses five states
to describe positive and negative electrode solid-state diffusion
or concentration gradient dynamics and one state to describe
electrolyte concentration gradient dynamics. An additional state
describes . This SVM, with 0 to 10 Hz band-
width, has eigenvalues

rad/s

The number of states is chosen to bring the reduced model
residual error (24) within an acceptable error tolerance [12].

Sizing filter gain requires choices for , , and . This
paper interprets as current sensor noise and adjusts its relative
influence on individual states with . With this interpretation,

is current sensor noise covariance and is voltage sensor
noise covariance, here, and V .
In theory, the relative influence of process noise on individual
states may be adjusted with individual elements of ; however,
this paper finds that filter eigenvalues (eigenvalues of )
deviate very little from model eigenvalues (eigenvalues of ) ir-
respective of , , and with the exception of . The
SOC eigenvalue, located at the origin in the open-loop model,
takes on negative real values in the closed-loop filter. Attempts
to move other filter eigenvalues to slightly faster locations (as

Fig. 2. UDDS driving cycle simulation: Nonlinear FVM model with 50% SOC
initial condition ��� and linear filter with 20% SOC initial condition ���. (a)
Current profile. (b) Voltage response. (c) SOC. (d) Negative electrode average
surface stoichiometry. (e) Positive electrode average surface stoichiometry.

little as ) through pole placement causes state esti-
mates to become overly sensitive to sensor noise.

Fig. 2 compares filter results with data generated by the
nonlinear FVM simulating the Urban Dynamometer Driving
Schedule (UDDS) for a hybrid electric mid-sized passenger
car [18] at 50% SOC. The cycle consists mostly of short-dura-
tion, low-to-medium-rate current pulses for which the battery
response is largely linear. In the simulation, filter states are
initialized at , i.e., 20% SOC with zero
solid and electrolyte phase concentration gradients. The filter
gain is sized with , giving 20 to 30
s (20–30 s) convergence to proper SOC [see Fig. 2(c)]. To
simplify presentation, Fig. 2(d) and (e) give solid phase surface
concentration distributions, , as electrode-averaged
surface stoichiometries

(34)

Surface stoichiometries rise and fall much faster than SOC as
they are more closely coupled to recent charge/discharge his-
tory. Overshoot in SOC and surface stoichiometry can occur
when filter states , and/or are initialized to nonzero values,
but convergence is still obtained in 20–30 s.

Faster converging filters yield noisy estimates when 2 A and
25 mV current and voltage sensor noise, respectively, are in-
cluded in the simulation. These noise levels are chosen to rep-
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Fig. 3. Filter error for UDDS driving cycle simulation using filters of var-
ious order: �� ��� (6 state) filter ���, �� ��� (5 state) filter ���,
�� ��� (4 state) filter ����. SOC initial conditions: 50% and 20%, re-
spectively, for nonlinear FVM model and linear filters.

resent low-cost sensors for an actual hybrid vehicle. With lower
noise sensors, the filter gains could be increased to reduce con-
vergence time without impacting estimate accuracy. The con-
vergence rate of 20–30 s, however, is reasonable for the appli-
cation. Typically, the initial SOC error is much smaller than the
30% used in Fig. 2.

In many situations, and particularly for input currents with
a negligible dc component such as the UDDS cycle current
profile shown in Fig. 2(a), lower order filters also provide
good performance. Electrolyte diffusion dynamics, impacting
the voltage response of the present battery only for sustained
medium-to-high-rate currents, may be dropped from the filter,
and electrode transcendental transfer functions may be fit
with 3rd and 4th order rational transfer functions rather than
fifth-order functions. Fig. 3 compares SOC and surface sto-
ichiometry errors for filters constructed from ,

, and models. The model
has eigenvalues

rad/s

and the model has eigenvalues

rad/s

A slight difference is evident between the three filters’ perfor-
mance on the UDDS cycle.

In Fig. 4, the battery is discharged from 100% SOC via 60
A pulses of 10 s duration with a 10 s rest between each pulse.
The discharge may be interpreted as a 30 A constant current
discharge superposed with 30 A perturbations. The DC com-
ponent of the current profile causes an electrolyte concentration
gradient to be established after approximately 20 s. Comparison
of the and the filters shows that an addi-
tional 1%–2% in SOC error and 1% in error is introduced by
dropping electrolyte phase dynamics from the filter. Reducing
the electrode model from 5 to 3 states introduces an additional
1% error in but affects and SOC estimates very little.

Fig. 4. 10-s, 60 A pulse discharge profile initiated from 100% SOC: (a) cur-
rent profile; (b) voltage response of nonlinear FVM model; (c–e) filter errors:
�� ��� (7 state) filter ���, �� ��� (6 state) filter ���, �� ��� (4
state) filter ����. Horizontal dotted lines denote �5% SOC error threshold in
(c) and �3% surface stoichiometry error thresholds in (d) and (e).

The discharge presented in Fig. 4 exhibits significant non-
linearities at the beginning 75 s and end of the discharge

450 s where the linear filter performs poorly. Equilibrium
potentials and , functions of surface stoichiometry (not
bulk SOC), represent the dominant nonlinearity of the battery
and the linear filter performs well so long as and re-
main within approximately 0.15 of their 50% SOC lineariza-
tion points. Note that surface stoichiometry, and thus equilib-
rium potential, will be a function of SOC only at rest, in the ab-
sence of solid-state concentration gradients. At rest, the linear
filter is accurate in the interval . Under dis-
charge or charge, however, surface dynamics can significantly
lead bulk dynamics (i.e., SOC) and for the particular pulse dis-
charge case shown in Fig. 4, the filter performs well from 92%
SOC 75 s to 49% SOC 450 s .

This paper explores two different filter applications of prac-
tical value for HEV control: 1) calculation of an instantaneous
“do not exceed” current that, in coordination with motor in-
verter power electronics, is intended to prevent battery damage
and 2) prediction of maximum current available for seconds
that, in coordination with vehicle supervisory controllers, en-
ables efficient and reliable HEV powertrain control. Depending
upon computational power, embedded controllers may imple-
ment these algorithms either on a single-cell or a complete-bat-
tery-pack basis, and the latter is expected to require a more
conservative approach when setting constraint limits because of
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Fig. 5. 5-s, 300 A nominal pulse discharge profile �� � �� limited by � �

���� maximum reference current ��� and � � ���� maximum reference
current ����. 50% SOC initial condition.

cell-to-cell variation. (Given safety issues associated with over-
charging, note that it is already standard practice to measure the
voltage of every cell in a Li-ion battery pack.)

In the following, state estimates are provided by the
(7 state) linear filter. Limiting currents are calcu-

lated using (32), where for the instantaneous current
limit and 10 s for prediction of future available current.
Simulations of the 6 Ah battery show that negative electrode
surface depletion limits the discharge performance before the
occurrence of either positive electrode saturation or electrolyte
depletion [18]. Meant to signal end of discharge, the manu-
facturer’s 2.7 V minimum voltage limit can occur with
anywhere in the range [0.03, 0.3], depending on discharge
current rate, SOC, and recent charge/discharge history. In
other words, sometimes the battery can each the 2.7 V “limit”
even though the electrode surface is not yet fully depleted. To
improve discharge power, a reference current may be used to
control the battery to an electrode surface stoichiometry limit
of during discharge.

Fig. 5 presents simulation results in which a nominal current
profile, , consisting of 300 A discharge pulses of 5 s each,
is limited using the control law .
Simulations are presented for two different negative electrode
surface stoichiometry limits, 0.03 and 0.25. The linear filter pro-
vides an imprecise, albeit conservative, reference current at the
0.03 limit as a result of plant nonlinearity at this low stoichiom-
etry. Filter mismatch due to model linearization is, using equi-
librium as a first approximation, predominantly caused by error
in open-circuit voltage

(35)

The negative electrode’s contribution to (35) is

(36)

Fig. 6. 5-s, 180 A nominal pulse charge profile �� � �� limited by negative elec-
trode � � 0.082 V minimum reference current ��� and � � 0.07 V
minimum reference current ����. 50% SOC initial condition.

or 0.272 V error at , a large amount. If current is limited
within a stoichiometry range where the lin-
earization contributes less than 8 mV error, the reference current
is more precise. Fig. 5(c) shows that discharge may be tightly
controlled to a limit, nearer to the filter’s lineariza-
tion point.

Charge performance of the present cell is limited by the man-
ufacturer’s 3.9 V maximum voltage limit, though other Li-ion
cells are sometimes charged as high as 4.2 V. The 3.9 V limit
is far from electrode saturation/depletion, and is more likely in-
tended to prolong battery life by slowing or avoiding side re-
actions that occur during charging at high voltages. One such
side reaction is lithium plating at the negative electrode sur-
face, predicted to occur in the negative electrode when

, with equilibrium potential [5],
[19]. Rather than insert into electrode active material particles,

ions from the electrolyte solution can form a solid Li film
on the particle surface. If the manufacturer’s 3.9 V maximum
limit is to be respected, the FVM predicts a worst-case phase
potential difference 82 mV occurring at the negative
electrode/separator interface during slow charging
near 100% SOC.

In Fig. 6, the nominal 5-s 180 A pulse charging pro-
file is limited by the afore-mentioned phase potential dif-
ference, that is, the battery is charged at the rate

. With control limits 82 mV
and 70 mV, the system charges, respectively, 8 mV
and 13 mV beyond the specified limit as a result of plant
nonlinearities, but it still stays well above the theoretical limit,

. Without simulation, this phase potential difference
error may again be estimated under the assumption of equilib-
rium where overpotential is neglected, leaving .
Equation (36) predicts 9 and 15 mV error for the 82 and 70 mV
control limits, respectively, slightly greater than the overshoot
error shown in Fig. 6. While some care must be exercised in
setting control limits, the opportunity clearly exists to pulse
charge the battery beyond 3.9 V and still be conservative with
respect to the lithium plating side reaction.
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Fig. 7. 4xUDDS driving cycle with 10-s maximum current discharge events
simulated once per 20 s: Model with 50% SOC initial condition ���, Filter with
60% SOC initial condition ����, � discharge events ���. �
calculated with � � ���� end of discharge condition, shown in (c) with
horizontal dotted line.

TABLE II
STANDARD DEVIATION (RELATIVE TO � � ���� LIMIT) AND MINIMUM

VALUE OF � AT END OF � DISCHARGE EVENTS DURING 4XUDDS
SIMULATIONS SIMILAR TO THAT PRESENTED IN Fig. 7. � PREDICTED

BY FILTERS OF VARYING ORDERS

In addition to instantaneous limits, the reference current gov-
ernor can predict maximum discharge current sustainable for
some fixed time into the future, intended as a feed-forward input
to powertrain supervisory control. The method is also applicable
in the charge direction. Using as end of discharge
limit and 10 s in (32), Fig. 7 shows discharge
events simulated once every 20 s during a more severe UDDS
cycle with four times the input current of the nominal UDDS
cycle [see Fig. 2(a)]. The filter, initialized with 10% SOC
error, converges in 20–30 s. The first discharge event
overshoots the end of discharge condition as a
result of the initial error; however, after 20 s, the maximum dis-
charge current is accurately predicted. Following several strong
discharge pulses from 160–200 s, some SOC estimation error
is evident, caused by low and accompanying nonlinear
voltage response. Filter estimates recover as concentration gra-
dients relax. Maximum current, underpredicted during this ex-
cursion, also recovers to good accuracy for the remainder of the
cycle.

Table II quantifies the ability of lower order filters to fore-
cast with end of discharge condition on
the 4xUDDS cycle following the initial convergence transient.
Only slight performance is lost by dropping the electrolyte dif-
fusion state from the filter and/or by reducing the number of

Fig. 8. 4xUDDS driving cycle with 10-s maximum power discharge events
simulated once per 20 s: Model with 50% SOC initial condition ���, Filter with
60% SOC initial condition ����, � discharge events ���. �
calculated with 2.65 V and � � ���� end of discharge conditions, the latter
shown in (c) with horizontal dotted line.

electrode states from 5 to 4, but further reduction to 3 elec-
trode states greatly increases the variability in reached
at the end of each discharge event simulation. The
filter sometimes predicts discharge rates that are not sustain-
able, where surface stoichiometry is depleted in less than 10 s.
The fourth-order filter is still a feasible candidate,
though only if used with a more conservative end of discharge
stoichiometry limit, perhaps .

Available current prediction is attractive because of the ex-
plicit manner in which the linear problem may be solved online;
however, an available power prediction would be more mean-
ingful in the vehicle environment. A precise power estimate
would require an iterative nonlinear solver (such as the bisection
search) performing constant power forward time simulation as
discussed in [20]. Alternatively, a conservative discharge power
estimate may be explicitly calculated as

(37)

where represents the lowest voltage occurring during the
maximum current event, i.e., at the end. A conservative charge
power estimate may be explicitly calculated as

(38)

where and are equilibrium potentials (functions of elec-
trode surface stoichiometry at the current collectors (15), not
functions of SOC) and is the static gain component of the
voltage/current state variable model. The voltage

will be the lowest voltage over the course of an
event, occurring at the very beginning. Fig. 8 presents

the 4xUDDS simulation with events simulated every
20 s. With the exception of the first event influenced by filter ini-
tial conditions, power capability predicted from (37) is, on av-
erage, 12% lower than actual available power. Less conservative
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Fig. 9. Standard deviation (solid bars) and maximum (gray bars) of estimation
error for a UDDS driving cycle. Plant parameters are modified to simulate a
degraded battery at middle and end of life.

power prediction may be obtained using a nonlinear reference
governor at the expense of added computational overhead.

The algorithm presented here is not adaptive, meaning
that some provision must be taken to ensure safe operation
throughout the life of the battery. Many degradation mecha-
nisms are described in the literature for Li-ion batteries, causing
loss of discharge/charge capacity, impedance growth, or both.
Examples include loss of active material sites in both electrodes
[21], growth of a solid/electrolyte interface layer on the neg-
ative electrode [22], and material structural changes causing
increased diffusion impedance at the positive electrode [23]. To
explore performance of the filter with a degraded battery, Fig. 9
gives the standard deviation and maximum error of the nominal
filter in predicting various control parameters for the UDDS
cycle [see Fig. 2(a)]. Twenty percent energy or power loss is a
typical end of life threshold for vehicle traction batteries [17].
Battery degradation is simulated by modifying the plant pa-
rameters to the extent that they cause 10% and 20% energy loss
(reduction of usable active material volume fraction and

) and/or power loss (film impedance growth at
the negative and diffusion impedance growth at the pos-
itive). Fig. 9 shows tolerable filter error for 10% degradation;
however, filter error is large at 20% degradation, particularly
when: 1) negative electrode phase potential difference is to be
controlled in the presence of a large film resistance on that
electrode or 2) negative electrode surface stoichiometry is to be
controlled in the presence of large negative or positive electrode
capacity fade. Positive electrode surface stoichiometry remains
well predicted under the various fade scenarios explored. The
positive electrode is “more” observable than the negative elec-
trode, indicated by the balanced observability/controllability

Grammian in [12], because of its more than sevenfold stronger
equilibrium potential dependency on surface stoichiometry.

An adaptive algorithm is desirable if computational com-
plexity can be kept reasonably low. Alternatively, a simpler
approach to improve robustness might be to identify the linear
filter at the middle of battery life, when 10% fade has already
occurred. In this way, mismatch would be less severe at end of
life.

IV. CONCLUSION

This paper shows how filters with low order (4 to 7 states)
may be designed from a fundamental Li-ion battery model to
control battery charge/discharge up to physical saturation/de-
pletion and side reaction limits rather than more conservative
fixed-voltage limits at the battery terminals. The linear filter,
based on a 50% SOC linearized model, performs well so long
as electrode surface stoichiometries stay within rest values
corresponding to 30%–70% SOC. During discharge or charge,
however, electrode surface dynamics can significantly lead
bulk (SOC) dynamics and a severe discharge/charge event may
cause nonlinear voltage response even with SOC near the 50%
linearization point. Following such an event, the linear filter
recovers as electrode solid-state concentration gradients relax.

Unlike previous electrochemical models formulated using
spatial discretization techniques, the present reduced order
model enjoys computational efficiency comparable to equiva-
lent circuit models. Expressed as a maximum current available
for a finite time horizon, the reference governor predicts margin
with respect to saturation/depletion and side reaction condi-
tions in a manner practical for integration with HEV powertrain
supervisory control. Instantaneous operating limits generally
occur in nonlinear regions of battery operation, for which a
nonlinear filter would be better suited than the linear filter.
Despite the error associated with the linear filter, the present
method enables pulse charging beyond the manufacturer’s
maximum voltage limit while maintaining a conservatism
with respect to the lithium plating side reaction. In the future,
adaptivity or online parameter estimation is desired to better
accommodate negative electrode model mismatch when the
battery is severely faded near end of life.
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