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Abstract. In this paper, we apply streamline-diffusion and Galerkin-least-squares fi-
nite element methods for 2D steady-state two-phase model in the cathode of polymer
electrolyte fuel cell (PEFC) that contains a gas channel and a gas diffusion layer (GDL).
This two-phase PEFC model is typically modeled by a modified Navier-Stokes equa-
tion for the mass and momentum, with Darcy’s drag as an additional source term in
momentum for flows through GDL, and a discontinuous and degenerate convection-
diffusion equation for water concentration. Based on the mixed finite element method
for the modified Navier-Stokes equation and standard finite element method for wa-
ter equation, we design streamline-diffusion and Galerkin-least-squares to overcome
the dominant convection arising from the gas channel. Meanwhile, we employ Kirch-
hoff transformation to deal with the discontinuous and degenerate diffusivity in water
concentration. Numerical experiments demonstrate that our finite element methods,
together with these numerical techniques, are able to get accurate physical solutions
with fast convergence.
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1 Introduction

Owing to their high energy efficiency, low pollution, and low noise, fuel cells are widely
regarded as 21st century energy-conversion devices for mobile, stationary, and portable
power. Through tremendous progress made in the past decade, currently available fuel
cell materials appear to be adequate for near term markets with highest cost entry points.
As aresult, industries are currently placing their focus on fuel cell design and engineering
for better performance, improved durability, cost reduction, and better cold-start charac-
teristics. This new focus has led to an urgent need for identification, understanding,
prediction, control, and optimization of various transport and electrochemical processes
that occur on disparate length scales in fuel cells.

A fundamental fuel cell model consists of five principles of conservation [29]: mass,
momentum, species, charge, and thermal energy. These transport equations are then cou-
pled with electrochemical processes through source terms to describe reaction kinetics
and electro-osmotic drag in the polymer electrolyte fuel cells (PEFC). Typically the fuel
cell to be modeled is schematically shown in Fig. 1 and divided into seven subregions:
the anode gas channel, anode gas diffusion layer (GDL), anode catalyst layer, ionomeric
membrane, cathode catalyst layer, cathode gas diffusion layer (GDL), and cathode gas
channel.
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Figure 1: Schematic diagram of a polymer electrolyte fuel cell.

In this paper we specifically focus our interests on mass, momentum conservation
and water concentration arising in gas channel and GDL of the cathode of PEFC. High-
current-density operation of PEFCs, is prone to liquid water formation due to excessive
water generation at the cathode, resulting in two-phase transport phenomena. The trans-
port processes then become significantly more complicated due to the coupled flow of
liquid water and gaseous reactants in porous media. Moreover, the ensuing two-phase
transport of reactant and product species becomes a limiting mechanism for cell perfor-
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mance, particularly at high current densities, i.e., greater than 1A /cm?. Therefore, a fun-
damental understanding of two-phase transport in porous gas diffusion layers of PEFCs
is essential in order to improve cell performance.

Wang et al. [32] explored liquid water transport by capillary action, dynamic interac-
tion between single- and two-phase zones via evaporation and condensation, and effects
of the phase distribution on gas transport, and described a numerical study of gas-liquid,
two-phase flow and transport in the air cathode of PEFC including hydrogen and direct
methanol fuel cells. In their models, they employed a modified Navier-Stokes equation
to describe the flow in gas channel and GDL simultaneously by adding a Darcy term
in the source, so that gas channel is considered as completely permeable, while GDL is
present as porous media. For water concentration equation, in order to present a unified
model that encompasses both the single- and two-phase regimes, and ensures a smooth
transition between the two, a discontinuous and degenerate function is introduced [32] as
diffusivity of the transport equation in terms of water concentration. In gaseous water re-
gion, the water concentration is below a fixed value called saturated water concentration
(16mol /m? at 80°C), coinciding with nonzero constant diffusivity. Once water concentra-
tion exceeds this fixed value, excess gaseous water is generated and condensed to liquid
water. Correspondingly, the diffusivity suddenly jumps down to zero and then grows
up into a smooth functional diffusivity with respect to liquid water concentration. Thus
a degenerate and discontinuous diffusivity is induced. On the other hand, both momen-
tum equation and concentration equation are all convection-dominated in gas channel
due to the relative large velocity of gas flow.

To deeply investigate the numerical issue of two-phase PEFC models, without loss
of generality, we adopt the models introduced by [32] and restrict it in two dimensional
steady-state case. In this model the most difficult part is how to efficiently deal with
the discontinuous and degenerate diffusivity arising in water concentration equation.
Due to significant discontinuity, standard numerical discretization and linearization fail
in obtaining stable convergent iteration for this nonlinear discontinuous and degenerate
transport equation. The dominant convectional coefficient is another difficulty to get
stable convergence for Navier-Stokes equation and convection-diffusion equation in gas
channel.

Therefore, how to accurately and efficiently solve the modified Navier-Stokes equation
and discontinuous and degenerate convection-diffusion problem with dominant convec-
tion terms are the fundamental numerical issues for two-phase transport model in the
cathode of polymer electrolyte fuel cell, which is also the main goal of this paper.

The rest of this paper is organized as follows. First of all, the governing equations
for two-phase steady-state transport problem in both gas channel and GDL are defined
in Section 2. In Section 3, we introduce the method of Kirchhoff transformation [1, 2,
5,7,18,33] and address how efficiently it deals with the discontinuous and degenerate
diffusivity. The entire finite element discretizations is given in Section 4, where a type
of mixed finite element method is employed to discretize momentum and continuity
equations, and Kirchhoff transformation is adopted to solve the discontinuous and de-
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generate water concentration equation. The dominant convection terms are dealt with
by means of streamline-diffusion scheme [11, 12, 14, 17, 20] and Galerkin-least-squares
scheme [8,9,25,26]. Numerical simulations of several practical cases are illustrated in
Section 5, indicating that our numerical schemes significantly improve the computational
performance in efficiency as well as accuracy.

2 The 2D steady-state two-phase transport model in PEFC
cathode

Based on [15], in this section we describe the governing equations for 2D steady-state
two-phase transport problem in the cathode of PEFC, define the relevant physical pa-
rameters and coefficients, as well as their boundary conditions. All of the involved pa-
rameters refer to Table 1 in Section 2.2.

2.1 Governing equations

Specifically for 2D steady-state two-phase transport model in both gas channel and GDL,
we introduce its governing equations in twofold fields: flow and species concentration.

Flow equations. For flow field with velocity if and pressure P as unknowns, we have
the following modified Navier-Stokes equations

(p#til) =V -(uVii)—VP+S,, (2.1a)

1
2V
V- (pit) =0, (2.1b)

where ¢ is porosity of air cathode, p is density, y is effective viscosity. We know (2.1b)
is exact continuity equation, and (2.1a) represents a modified momentum equation, in
which we indicate that the additional source term S, is named as Darcy’s drag and de-
fined as follows

S, = —Iﬁ(ﬁ, 2.2)

where K is a position-dependent “permeability” in porous cathode, defined as

K { +o0 in gas channel, (2.3)

KeprL = 102 in GDL.

The definition of K implies that gas channel is considered as completely permeable, while
GDL is present as porous media with small permeability Kgpy..
Darcy’s drag S, is exactly developed from Darcy’s Law in porous GDL:

K
= —SPLyp
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When K =00 in gas channel, S, =0 according to (2.2). Therefore (2.1a) reduces to classical
momentum equation. On the other hand, notice that permeability Kgpp = 10712 and
¢ =0.3 in GDL, all the rest terms in (2.1a) in GDL become negligible after multiplying
permeability K on both sides, which induces (2.1a) to tend to be Darcy’s law along with a
rescaled gradient pressure vector.

By virtue of this additional source term S,, the momentum balance equation is mod-
ified to be valid in both GDL and gas channel, presenting the extended Darcy’s law for
two-phase flow in porous GDL with small permeability, and exact Navier-Stokes equa-
tion in gas channel with unit porosity and infinite permeability. (2.1) is also known as
Darcy-Brinkman-Forchheimer model [13], which is typically used to model the flow inside
the porous domain. Finite difference method was first employed in [6] for such model
involving the Navier-Stokes equations with an added Darcy term. Then a uniformly sta-
ble finite element method was developed in [34] with respect to the singularly perturbed
coefficients for similar model.

The advantage of modified Navier-Stokes equation (2.1) is that, we simultaneously
solve Darcy-Navier-Stokes flow in one single domain, instead of two-domain approach
where Beavers-Joseph-Saffman interface condition [4, 10, 19] along the tangential direction
of GDL/gas channel interface, continuity of mass flux and continuity of normal stress
across GDL/gas channel interface must be employed. The equivalence between these
two approaches is discussed in [21]. Obviously single domain approach is easier to
implement, especially in the simulation of three dimensional complete fuel cell model,
which will be investigated in separate paper [23].

Species concentration equation. Water management is one of the key issues in poly-
mer electrolyte fuel cell. Due to the coexistence of single phase zone and two phase zone,
water equation turns to be the most important and difficult species equation to deal with
through the entire fuel cell. Therefore, for species concentration equations, in order to
focus on water management topics, without loss of generality, we typically consider sin-
gle component model by taking water as the only species in the simplified concentration
equation.

Water concentration equations are spatially defined as follows with respect to water
concentration C [15]

V-(7.C)=V-(T(C)VC), inGDL; (2.4a)
V- (iC)= V-(D;ffVC), in gas channel, (2.4b)

where 7. is the advection correction factor defined in Section 2.2, the diffusivity I'(C) in
GDL is defined as

Fca dif fr if CZCsat;
I'(C)= P 25
© { DY/, if C<Car 29

Here Cs,; is saturated water concentration. D;f f_ ‘<31‘5Dg,1S is the effective water vapor
diffusivity, namely, the constant diffusivity in gaseous water region. I'c;,4i¢f is capillary
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diffusion coefficient, i.e. the functional diffusivity in liquid water region, defined as fol-
lows in terms of liquid saturation s:
dj(s)

mf;  Cga M AlAg 1/2
r . e - — —_ .
capdif f ( M 0g ) Pl_csatM) y U’COSQc(gK) s |’ (2 6)

here s € [0,1] denotes the liquid saturation throughout the paper. It is a basic variable in
multiphase mixture (M2) model [31,32], and has coequality with water concentration as

S
c=E2+Cal(1-),

hence 0
sS= (C—Csat)/(ﬁl _Csat)~

J(s) is the Leverett function, given by

()= 1.417(1—5)—2.120(1—5)2+1.263(1—5)3, if 6, <90°;
~\ 1.4175—2.120s% +1.263s%, if 6, >90°.

According to the definitions of physical parameters and coefficients in Section 2.2, we
can easily calculate that I'cgpgirf =0 when C=Csat 0r s=0. S0 U'cgpaifs, and further I (C),is
degenerate at Cgyt.

The behavior of diffusivity I'(C) can be better understood in Fig. 2, where I'(C) is
clearly indicated as a discontinuous and degenerate function with respect to C. Cgat =
16 mol/m? is the typical point at which discontinuity and degeneracy occur for I'(C) at
the same time.
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Figure 2: T(C).

When the gas channel is dry, although there is huge jump in diffusivity I'(C) between
the single- and two-phase regimes in GDL, I'(C) is still continuous across the GDL/gas
channel interface due to the same constant diffusivity Dg,f !

Governing equations (2.1) and (2.4), together with the definitions of physical coeffi-
cients and parameters in Section 2.2 and the boundary conditions in Section 2.3, consti-
tute the 2D steady-state two-phase transport model in the cathode of polymer electrolyte
fuel cell.
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2.2 Coefficients and parameters

The physical coefficients and mixture variables arising in the governing equations (2.1),
(2.4) and the definitions of their coefficients are specifically defined for single component
two-phase transport PEFC model as follows:

e Density p=p;5+p0¢(1—5),

e Relative mobilities A;(s) =k, /vi/ (kyi/vi+ky/vg) and Ag(s) =1—A(s),
e Relative permeabilities k,; =s° and k,q = (1—5)3,

e Kinematic viscosity v= (ky; /v +krg/vg) -1

o Effective viscosity y= (0;-s+04-(1—5)/ (k/vi+kig/vg),

e Advection correction factor . = (o(A;mf; +Aymfy))/ (omf;s+pemf, (1—s5)),
where mf; =1,mf; = Cst M/ pg are mass fractions of liquid water and gaseous
water, respectively.

Advection correction factor - is a continuous function with respect to concentration.
In gas channel we always assume water closes to be gaseous phase, i.e., s=0. Therefore,
¢ is correspondingly reduced to be unity and the continuity of convectional coefficients
of (2.4) are then preserved while crossing over the GDL/gas channel interface.

Other property parameters refer to Table 1.

Table 1: Property parameters.

Parameter Symbol | Value Unit
Water vapor diffusivity Dgas 26x107° m?/s
Water molecular weight M 0.018 kg /mol
Vapor density Pg 0.882 kg/m3
Liquid water density 01 971.8 kg /m?®
Surface tension o 0.0625 kg/ 52
Contact angle between two phases | 0. In

Porosity of GDL € 0.3

Kinematic liquid water viscosity V) 3.533x 1077 | m?/s
Kinematic vapor viscosity Vg 3.59x107° | m?/s
Faraday constant F 96487 A-s/mol
Current density at the left end I 20000 A/m?
Current density at the right end I 10000 A/m?

One advantage of multiphase mixture (M?) model [30-32] is that we do not need to
track phase interfaces between single- and two-phase regimes, it is automatically indi-
cated by the solution, and therefore greatly simplifies numerical simulation of current
two-phase transport problem. In fact, according to above definitions of coefficients, all



56 P. Sun, G. Xue, C. Wang and ]. Xu / Commun. Comput. Phys., 6 (2009), pp. 49-71

the governing equations (2.1), (2.4) identically reduce to their single-phase counterparts
in the limits of the liquid saturation, s, equals to zero and unity, respectively.

2.3 Computational domain and boundary conditions

We specifically consider that governing equations (2.1) and (2.4) take place in the cathode
of PEFC which consists of gas diffusion layer and opening gas channel, as schematically
shown in Fig. 3. The horizontal x-axis represents the flow direction and the vertical y-
axis points in the through-plane direction. The geometric sizes of this computational
domain are marked in Fig. 3 as well, where the physical width of GDL and gas channel
are 0cpL =3x10"*m, Scy=10"3m, respectively, in comparison with the length in flow
direction Ipgrc =7 x 1072 m. The large aspect ratio of the channel length to width, which
is up to about 1:100, exhibits a very micro-fabricated thin-film structure.

t (&)
BopL=300%10% C:) IE<==01 2-12 m? C)
2 o 9c=éf 3 4

E=infinity
Ber=1"10%m @ CHANNEL | 5=1 ©)

i YT
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4

Figure 3: Domain.

At the inlet of the gas channel ((9Q2); in Fig. 3), constant flow rate and water con-
centration are specified. At the outlet ((0Q))3 in Fig. 3), both velocity and concentration
fields are assumed to be fully developed. Hence based on this computational domain,
the boundary conditions are indicated as follows.

For flow field equation (2.1), the following boundary conditions hold with respect to
velocity i

U1 =11 lintet(m/s),up =0 atinlet (0Q)y,

where 1 |inet are given in (4.8);
(P—uVii)-#i=0 atoutlet (0Q)3;

ii=0 at the bottom wall (9Q))s; i =0 at side and top walls (9Q2)2,(9Q)4 and (9Q2)s.

For water concentration (2.4), the following boundary conditions hold with respect to
concentration C: at channel inlet (9Q));, C = Ci,(mol /m?); at the bottom and side walls
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(09))2,(0Q))3,(0Q2)4 and channel outlet (9Q2)s, VC-7i=0; at the top wall (9Q})e, the liquid
water mass flux condition is given by:

F(C)VC-ﬁ—’ycﬁC-ﬁ:Lx), (2.7)
2F
where the Dirichlet boundary condition at (0Q))1 is usually set as Ci < Cg,t to indicate the
input of gaseous component. At the membrane/cathode surface ((00))), the nonhomo-
geneous Neumann boundary condition is given to simulate oxygen reduction reaction
occurring in catalyst layer and generating liquid water mass flux, which is demonstrated
by Faraday’s law as shown in the right hand side of (2.7) [29], where I(x) is the volumetric
transfer current of the reaction (or transfer current density) defined by a linear function

as follows A
I(x)= <Il_(11_12)ﬁ> [W] , (2.8)

where I, I; are technically given in Table 1. (2.8) is the linear reduction of Butler-Volmer
equation, indicates that the transfer current density linearly decreases from constant local
current density I; at left end of membrane/cathode interface (top wall) to I, at right end.
This is an approximation of transfer current density for our simplified single component
two-phase PEFC model due to the absence of electric potentials.

3 Kirchhoff transformation

In this section, we start our numerical efforts with water concentration equation (2.4)
first. Due to highly nonlinear discontinuous and degenerate diffusivity I'(C) defined in
(2.5), it is hard to obtain convergent solution for the nonlinear iteration of (2.4) with stan-
dard finite element discretization. This nonconvergent phenomenon has been revealed
by many numerical experiments with finite-volume based commercial flow solvers and
our in-house code of standard finite element method [22], as shown in Fig. 4. Therefore,
an efficient discretization scheme to deal with the nonlinear discontinuous and degen-
erate diffusivity I'(C) is the key to make the entire nonlinear iteration converge fast. To
this end, by Kirchhoff transformation technique [1,2,5,7,18,33], we are able to reformulate
(2.4) to a semilinear convection diffusion equation with simple Laplacian term as diffusion
with respect to a new variable, where the nonlinearity, discontinuity and degeneracy aris-
ing in diffusivity I'(C) all disappear. Instead, we need to implicitly solve inverse Kirchhoff
transformation in order to obtain the desired concentration.
First of all, based on diffusivity I'(C), we define a new variable W in terms of Kirchhoff
transformation c
W(C)= /C I'(w)dew. (3.1)
Hence W is a function of concentration C > Cphin, Where Cyin is the lower bound of con-
centration. Here we can take Cpin = Cin, the entry concentration of gaseous water on the
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Figure 4: Convergence history with standard method for (2.4).

inlet. By minimum principle, Ci, is exactly the minimum concentration in the entire do-
main, if considering the positive water flux boundary condition on the top wall and zero
source in (2.4), eventually positive total source for the entire domain.

On the contrary, it is impossible to find an explicit formula for inverse Kirchhoff trans-
formation of (3.1) since concentration C is a highly implicit function of W. A specific
method needs to be found to compute C from W.

In particular, for water concentration equation in gas channel (2.4b) with constant

diffusivity DY, we still have the specific Kirchhoff transformation as follows
€ peff eff
W:/c- D dw =D (C—Cp), (32)
where Kirchhoff’s variable W is a linear function of C in gas channel, or inversely,

C= (DY) 'W+Cin. (3.3)

Thus the full Kirchhoff transformation for diffusivity I'(C) in water concentration
equations (2.4) can be described as follows

c :
INw)d GDL,
w ] Je Twyde i (3.4)
Dg,f f (C—Cjn) in Channel.

Physically, we are looking at the dry channel case, i.e. the single-phase (gaseous water)
region traverses GDL/gas channel interface and fills in the entire gas channel. Therefore
I'(C) mathematically equals constant gas diffusivity D;f / at the interface, which is con-
sistent with the diffusivity in gas channel. Thus, the continuous solution W is attained

across the interface. By differentiating both sides of (3.1) with respect to spatial variables,
we have the gradient of W: VW =T(C)VC.
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By virtue of (3.4), and considering continuity equation (2.1b) in gas channel, we can
reformulate (2.4) to an equivalent new water concentration equation with respect to W,
along with new corresponding boundary conditions as follows

AW =V - (7iiC) in GDL, (3.5a)
AW=V" ((Dgff)_lﬁW) in gas channel, (3.5b)
W=0 on (90)1, (3.5¢)
w1

o — Y iUC-= >F on (0Q), (3.5d)
%_V: =0 elsewhere on 9(). (3.5¢)

We observe that only one single Laplacian term is involved in the left hand side of
(3.5a) and (3.5b), the original discontinuous and degenerate diffusivity I'(C) has been
hidden inside the Kirchhoff transformation (3.1), which significantly reduces the difficulty
of nonlinear iteration and makes fast convergence imaginable. Now the only nonlinear-
ity stays in the right hand side of (3.5a), the convection term V- (ilC(W)), where C is
an implicit function of W in terms of the inverse Kirchhoff transformation and the nonlin-
earity is introduced.

We notice that the convection term in GDL quite differs from that in gas channel. We
reformulate them in different ways because of the significant distinction they bear on
the convectional coefficients. On account of the linear inverse Kirchhoff transformation
(3.3) in gas channel, we can directly get linear convectional coefficient for W in (3.5b).
But the inverse Kirchhoff transformation in GDL is implicitly given, no explicit formula
to change variable C to W directly. On the other hand, it is hazardous if we insist on
applying Kirchhoff transformation to V-(7.iC), a new convection term that explicitly
depends on W will be obtained as

- ~ - _ VW o

V- (7.iiC) I%u-VCJrV-(%u)CZ%u‘erV‘(%u)C(W)-
As a result, a large or even infinite convection term VW /T'(C) may be produced when
C is close to the degenerate point Csyt and then I'(C) approaches zero. Therefore we
must avoid applying Kirchhoff transformation to the convection term in (3.5a). Thanks
to relatively very small Darcy’s velocity i in GDL in comparison with flow velocity in
opening gas channel, this convection term is not dominant at all, accordingly we are able
to keep its original form unchanged and move it to the right hand side as equivalent
source term. This additional source term does not explicitly depend on W, which allow
us to directly compute it by updating C from the latest W in terms of a doable inverse
Kirchhoff transformation of (3.1).

Actually (3.5a) is only a semilinear equation because there is one single C stays in the
right hand side which depends on W via the inverse Kirchhoff transformation, an implicit
function. Picard’s method is sufficient to linearize it. In each iteration step, C is updated
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by the inverse Kirchhoff transformation from W. In contrast to (3.5a), (3.5b) is just a linear
equation in gas channel, velocity i is remarkably large therein, which results in domi-
nant convection term in (3.5b). So we cannot consider the preformation of convection

term Vo((Dgf f )~liiW) as an additional source term. It has to be reformulated to cur-
rent explicit convection form of W via linear Kirchhoff transformation (3.3) and treated by
certain upwind scheme in its discretization in order to stabilize the numerical solution.

In view of the weak nonlinearity in (3.5), we would be able to expect fast convergence
of nonlinear iteration for W, and consequently for C, if an accurate and efficient method
could carry the inverse Kirchhoff transformation of (3.1) into effect. It is nontrivial to
compute this inverse Kirchhoff transformation directly [27,28]. One relatively simple ap-
proach is Look-Up Table (LUT) method, namely, search corresponding value of C in a
sorted relational data table between W and C at certain value of W by one data search
method, say, bisection. For more accurate and faster approach, see [24] where we present
a type of Newton’s method to efficiently deal with the inverse Kirchhoff transformation.

4 Finite element approximations

In this section we design our finite element discretizations for Navier-Stokes equation (2.1)
and the reformulated water concentration equation (3.5). Considering their various non-
linearities, we particularly employ Newton’s method to linearize the nonlinear convection
term in (2.1) and Picard’s scheme to linearize the nonlinear source term in (3.5).

4.1 Newton’s linearization for Navier-Stokes equation (2.1)

Before Newton’s linearization, we rewrite (2.1) as following equivalent forms by applying
continuity equation (2.1b) to the convection term in momentum equation (2.1a), and then
splitting continuity equation to two parts in order to constitute a saddle point system:

Poom_ o Ko
E—Zu-Vu—V-(qu)—VP—I?u, (4.1a)
V-ﬁ:—%-ﬁ, (4.1b)

Newton'’s linearization for (4.1) follows thereafter. Provided (ii",C") are given, we define
("1, P"+1) as the iterative solutions of the following Newton’s linearization scheme (1=
0,1,2,---):

n
P (1/_[” VATl S v _ﬁn—i-l)
2

— V. (Vi) - v prl %ﬁ“%i—ﬁn Vit (4.22)

Vit = —Vp—fj ", (4.2b)
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If the above scheme converges, then we can pass the limit # — co on both sides of (4.2).
Since " —ii,p" — p,u" — u, the limit of (4.2) is eventually equivalent to (4.1), the validity
of linearization scheme (4.2) is confirmed.

4.2 Picard’s linearization for concentration equation (3.5)

Given (i",C"), we define (W"+1,C"*1) as the iterative solution of the following Picard’s
linearization scheme (n=0,1,2,--+):

{ AWM =7 (7" C") in GDL, 43)

AW = V~((D§ff)*1ﬁ”W”+1) in gas channel,
together with the inverse Kirchhoff transformation, we obtain C"*1 from W"*1.

4.3 Weak forms
We define

Vi={3=(v1,02) " € [H']*|v1](900), = t1|intet }
Q:={weH'|w|3q), =0}, P:=L?
V:={7=(v1,0,)" €[H']?

Then the mixed weak forms of (4.1) and (3.5) on the basis of linearizations (4.2) and (4.3)
are presented as follows: for any (7,q,w) €V x Px Q, find (#"+1,P"*1, W) e V x Px Q,
such that

( nv—»n—i-l — pn i —»n—i—l — P =N —»n—i—l -
Wittt o)+ (s Vi, o)+ ( Vii ,0)

— (v (B ) = (G v ), (t4a)
(Vi) = (it ), (4.4b)
(VW™ V) = (1."C", Vo) + / —)wdx in GDL, (4.4¢)
(VW™ Vw) — (D) ﬁ”W”“,Vw)

+ 60) (Dg,f N1 7iW" lwdy =0 in gas channel. (4.4d)
;

4.4 Finite element discretization

In correspondence with mixed weak forms (4.4), we employ mixed finite element method
to discretize Navier-Stokes equations (4.1), and apply standard finite element method to
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reformulated water concentration equation (3.5) as well. Considering the convection
term in (4.1a) and (3.5b) could be dominant due to the large velocity i in gas channel,
therefore, in order to stabilize the numerical computation for nonlinear iteration (4.2) and
(4.3), we need certain upwind scheme to overcome these possibly dominant convection
terms.

Since finite-difference based upwind scheme cannot directly work for finite element
discretization, as substitutes, streamline-diffusion scheme [11,12,14,17,20] and Galerkin-
least-squares scheme [8,26] are appropriately chosen to deal with dominant convectional
coefficients in the framework of finite element method. Typically, we apply Galerkin-
least-squares scheme to (4.1a) and streamline-diffusion scheme to (3.5b), respectively, due
to their own specific convective features. In our another paper [24], we will discuss a
combined finite element-upwind finite volume method for this nonlinear convection-
diffusion problem by employing a finite-volume based upwind scheme to specifically
deal with dominant convection term only.

To discretize weak forms (4.4) via finite element method in the domain shown in
Fig. 3, we firstly define the finite element space S, =V}, X P, x Q;, CV x P X Q on certain uni-
form or quasi-uniform triangulation 7;,, where V}, consists of piecewise quadratic polyno-
mials, and P, and Qj, consist of piecewise linear polynomials, & represents the maximum
mesh size. In Sy, subspace V), x P, is exactly the well known space of Taylor-Hood el-
ement, one type of stable mixed finite element specifically for saddle-point variational
problem [3]. The purpose of such choice for finite element space Sj, is to approximate
velocity with quadratic element (P;), and pressure and concentration with linear element
(P1), simultaneously, on the theoretical basis of Babuska-Brezzi-Ladyzhenskaya condition
(BBL) and its discrete form [16].

Based on weak forms (4.4), we define the following mixed finite element discretiza-
tion, combining with Galerkin-least-squares and streamline-diffusion schemes together
to deal with the dominant convection terms in momentum equation and concentration
equation, respectively.

For any given (7,q,w) € Sy, find (u’“rl P”Jrl W”“) €S, (n=0,1,2,--+), such that

((y(C )v—»n—H V5)+(p(€CZ) V—»n—i—ll—»)

n

Ch —n_ =n+1 = n C —n+1 =
+ A v s - (v 0+ (U g

+5gls<h) ) <£(—»n+1 Pn+1 Wn+1) £(v’q’w)> _ (P(;n) —n v—»n —») (4.5a)
Ve(Cy)
p(C})

(VW Vw) = (il Cll, V) + /(am %wdx (GDL), (4.5¢)
6

—(Veity ) =(

-iy,q), (4.5b)
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(YW, V)~ (D) awi ! V) + /( oy, (D)W oy
3

+oqa() (DF) - wwi, (D) ity Vo)

¢ Ch effr—1=
—814(h) ((Dgff)_lw-ﬁZW;ZH,(Dgff) 1uZ-Vw> =0 (Gas channel), (4.5d)

()
where the last term in the left hand side of (4.5a) is a stabilizing term, derived from
Galerkin-least-squares scheme in terms of £, which is the momentum operator of (4.1)
and defined as

L(ii,P,W)= —V-(;t(C(W))Vﬁ)-l—p(CiizW))ﬁ-Vﬁ-i-VP-i- w&
This stabilizing term added is obtained by minimizing the sum of the squared residual of
the momentum equation integrated over each element domain. It involves the momen-
tum equation as a factor, therefore, despite this additional term, an exact solution is still
admissible to the variational formulation given by (4.4).

Similarly, the streamline-diffusion scheme introduces the last term in the left hand
side of (4.5d). Both of these two schemes aim at balancing the magnitudes between dom-
inant convection term and insignificant diffusion term by working together with two
important parameters d,5(h) and &;4(h). Although they present different forms, both
of them intend to introduce artificial diffusivity (viscosity) into the discretization. To
execute this mission, besides the additional discrete diffusive forms as shown above, pa-
rameters dgis (1) and dg4(h) play another important role here. Basically they hold

(Sgls (h) = Cglsh/ Os1d (h) = Cs1ah,

ie., 5gls(h) and J4(h) are proportional to mesh size h, Cg1s and Cyyg are certain constant
parameters. Therefore, when mesh size h is sufficiently small, the additional diffusive
terms introduced by Galerkin-least-squares and streamline-diffusion schemes eventually
approximate to zero with the rate of convergence O(h). So numerical discretization (4.5)
still approaches the original one when / is small enough.

In practice, it is difficult to give a generic formula for Cgs and Cgy in nonlinear case
[11,12,14,17,20]. They have to be chosen artificially in order to obtain the optimal stable
solutions. Usually starting with small ones, we gradually increase the values of Cgs and
Cs14 and compute the corresponding finite element equations (4.5) until gained numerical
solutions are not oscillating any more in convection-dominated opening gas channel.

We state the algorithm of implementing finite element discretizations (4.5) in Algo-
rithm 4.1.

In Algorithm 4.1, we need to indicate the initial guesses (i), C). Although there is no
certain way to define the initial guess, in practice, usually it can be simply given in terms
of boundary conditions and physical phenomena. It is well known that the flow profile
is parabolic once laminar flow is fully developed in long, straight channel, under steady
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Algorithm 4.1:

For n>0, given u_'?l,Cg, the following procedures are successively executed:

1. Implicitly solve (4.5) for (i} *1, P/ 1, W) first.
2. Calculate Ch'H'1 with W;Z‘H in terms of the inverse Kirchhoff transformation.
3. Determine if the following stopping criteria hold:
_n+1 - 1 1
ity =it 1200y +1PE ™ =Pyl 20y + G = Ci 12

0 12y F P72y H Gl 200

< tolerance, (4.6)

which is the relative convergence error in successive two iteration steps. If yes, then numerical
simulation is done. Otherwise, go back to the first step and continue.

flow conditions. Based on this fact, we are able to assign the initial data of velocity as
follows

(uo) B uinsin(yn/(SCH), JCZO, OSyS(SCH (inlet),
R/ 0, elsewhere, 4.7)

(1)2=0, C}=Cin,

where (1) is the x-component of if). We use a sin function to approximate (1)); as a
parabolic-like function at the inlet, an approximation of laminar flow in long, straight
gas channel, whose the highest velocity ui, (m/s) occurs at the center of inlet (y =dcy/2)
and quadratically decays to zero on the boundary wall. This initial guess is close to
the real case of parabolic flow in relative long gas channel. It would be helpful to attain
good convergence for nonlinear iteration accordingly. As a consequence, in the following
numerical experiments, we assign the Dirichlet boundary condition of velocity at the inlet
as follows

U1 |intet = Uinsin(y7t/écp), 0<y<dcnh. (4.8)

Considering Kirchhoff transformation (3.1) does not depend on the spatial domain
but only concentration variable, we can directly generalize it to three dimensional case.
Consequently numerical discretizations (4.5) are also able to be equivalently extended to
three dimensional PEFC model without any difficulty.

In Section 5, a dry inlet will be chosen as a case of study therein because of recent
interests in proton exchange membrane fuel cells (PEMFC) without external humidifica-
tion and low-humidity, self-sustaining fuel cells for portable electronics. In addition, the
dry inlet of the air cathode is of potential relevance to direct methanol fuel cell (DMFC).
Thus the entire numerical methods studied in this section can be applied to this dry case
immediately.
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5 Numerical simulations

In practice, the magnitudes of imported velocity and concentration at the inlet of gas
channel produce dramatic affection to velocity and water concentration field in both
gas channel and GDL. Smaller concentration (Cin < Csat) and bigger entry velocity (i, >
3m/s), which imply dry air and fast vapor transport rate, may have greater possibility
to keep gas channel dry than the other way round. On the other hand, higher transfer
current density I makes cathode reaction require more oxygen and generate more liquid
water at membrane/cathode surface, which increases the amount of liquid water present
in GDL and clearly forms the two-phase region. When accumulated liquid water in GDL
drives the interface of single- and two-phase regions reaches over GDL/gas channel in-
terface, wetted gas channel is produced accordingly.

In this section, we will illustrate these physical phenomena with the numerical meth-
ods mentioned in Section 4 by imposing various physical entry velocities at the inlet and
transfer current densities I at membrane/cathode surface (9Q))s. Simultaneously the ef-
ficiency and accuracy of our presented numerical techniques are exhibited.

First of all, we define the triangulation 7; on the domain shown in Fig. 3 with 20
intervals for the length of fuel cell along x-direction, 30 and 25 intervals for the width
of gas channel and GDL, respectively, along y-direction. So the number of total grids in
7y is 20 x (304-25) =1100. The tolerance of our stopping criteria (4.6) for the nonlinear
iteration is 1010
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Figure 5: Convergence histories (left) FEM with Kirchhoff transformation; (right) standard FEM without
Kirchhoff transformation.

Case 1: Ci,=14 mol/m?, uj,=3 m/s, average current density I=1.5Acm 2. Provided
that a practical boundary condition Ci, =14mol / m3,uy, =3m /s is reinforced at the inlet of
gas channel, and liquid water mass flux condition (2.7) is assigned at membrane/cathode
surface with the average cell current density (I; +1,)/2=1.5Acm 2, we gain reasonable
physical solutions by employing numerical discretization (4.5) and appropriately choos-
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Figure 6: Horizontal two-phase mixture velocity in the Figure 7: Vertical two-phase mixture velocity in the
case of C;, =14mol /m3,u;, =3m/s,I=1.5Acm 2. case of G, =14mol /m3,u;, =3m/s,]=1.5Acm 2.
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Figure 8: Two-phase mixture velocity field in the case of Cj, =14mol/m>,u;,=3m/s,I=1.5Acm 2.

ing parameters Cgs and Cyj4 for nearly optimal control on dominant convectional coeffi-
cients. These results are quite similar with [32], see Figs. 6-12 within only 19 nonlinear
iteration steps. Fig. 5 displays the fast convergence process with Kirchhoff transformation
and oscillating iteration without Kirchhoff transformation, respectively.

In the following, the focus is placed on elucidating numerical simulation results shown
in Figs. 6-12, where the interface of gas channel and GDL is indicated in these figures by
a bold line.

Figs. 6-8 shows the velocity field of the two-phase mixture in the GDL and gas chan-
nel. As expected, there is a large difference in the velocity scale between the porous
GDL and the open channel. The mixture velocity in porous GDL is at least two orders
of magnitude smaller than that in the open gas channel, indicating that gas diffusion is
the dominant transport mechanism in porous GDL. The flow field in the open channel is
fully developed in view of the large aspect ratio of the channel length to width, as can be
seen in Fig. 8 where the channel length is, however, not drown to scale for better view.

Fig. 10 displays the water concentration distribution whose value is below Cg,t, pre-
senting in the phase of water vapor, in the porous cathode and flow channel. As the air
flows down the channel, water vapor is continuously added from the cathode, resulting
in an increased water vapor concentration along the channel. As a result, liquid wa-
ter may first appear in the vicinity of the membrane/cathode interface near the channel
outlet. A two-phase zone at this location is indeed predicted in the present simulation
shown in Fig. 9, where the water concentration is greater than Cs,, and water vapor is
condensed into liquid water therein.
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Figure 11: Liquid water saturation in the case of Cj,= Figure 12: Kirchhoff's variable W in the case of C;, =
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front separating the two-phase zone from the single-

phase region is approximately represented by s=0.01.

In accordance with Fig. 9, liquid water is seen in the upper-right corner of Fig. 11 to
coexist with the saturated water vapor. The largest liquid amount predicted in Fig. 11 is
around 6.8% at the average current density of 1.5 A cm~2, matching well with 6.3% at
the current density of 1.4 A cm~2 in [32] where a full PEFC model is considered and the
current density I is exactly computed in terms of Butler-Volmer equation.

Fig. 12 demonstrates that the Kirchhoff’s variable W is a complete smooth function
in the porous cathode and flow channel. With the inverse Kirchhoff transformation, the
postprocessing computation of water concentration C is appropriately achieved in terms
of smooth Kirchhoff’s variable W. Due to the discontinuous and degenerate diffusivity
I'(C), the inverse Kirchhoff transformation gives birth to water concentration C with sharp
interface between single- and two-phase region, suddenly jumping from C < Cgyt =16 to
the magnitude of 10%, as shown in Fig. 9.

The error of mass balance. In order to verify the correctness of our numerical solu-
tions, we compute the relative error of mass balance in terms of the numerical fluxes at
the inlet and outlet and the source as follows

L+
‘ f(aQ)outlet Cupdt— f(ao)inlet Cint1 ’inleth— 14F 2 IpERC

f(aQ)inlet Cinul | inleth

(5.1)

mass balance error =

By plugging assigned and computed concentration C as well as horizontal velocity 1
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Table 2: Convergent mass balance error for the case of Cj, =14mol /m>,uy, =3m/s,]=15Acm=2.

Mesh size h | Mass balance error
1.4x10772 9.801x 1072
7x1073 2.268x1072
3.5x1073 3.088x1073

into (5.1), and computing those integrals in terms of one simple numerical quadrature,
say, trapezoidal quadrature rule, we attain a convergent mass balance error for our nu-
merical solutions along with the decreasing maximum mesh size h, as shown in Table
2. We see that, at current mesh density (h = 3.5 x 1073), an accurate mass balance error
(<1%) is attained for the gained numerical solutions.

Case 2: Ci,=14 mol/m?, u;,=3 m/s, average current density I=1.05Acm 2. Keep the
same entry concentration and velocity with Case 1 at the inlet, we reduce the average
current density to 1.05Acm 2 by taking I; = 1.4Acm =2 and I, = 0.7Acm 2 in this case.
By our discussion in Case 1, this case supposes to lift up the interface between single-
and two-phase regions, which means, less liquid water will accumulate near the mem-
brane/cathode surface. By numerically simulating this case within 19 convergent itera-
tion steps, we attain the expected numerical solutions that strongly supports our analysis.
In comparison with Case 1, there are much smaller amount of liquid water accumulate at
the upper right corner of GDL, as displayed in Fig. 13.
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Figure 13: Water vapor concentration in the case of Ci, = 14mol /m?,ui, =3m/s,]1=1.05Acm 2.

6 Conclusions

Many numerical experiments indicate that the main difficulty in the numerical simula-
tion of two-phase transport model in the cathode of polymer electrolyte fuel cell is the
oscillating nonlinear iteration. We investigate this problem and found that the discontin-
uous and degenerate diffusivity in concentration equation and the dominant convection
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coefficients in gas channel are two crucial reasons to prevent the entire nonlinear iteration
from convergence.

In our numerical efforts on concentration equations (2.4), we present that Kirchhoff
transformation performs dramatically on solving discontinuous degenerate concentra-
tion equation in GDL. In terms of different Kirchhoff transformation in GDL and gas
channel, we reformulate (2.4) to a convection diffusion equation with simple Laplacian
term as diffusion and different treatments on convection terms.

To handle dominant convection coefficients in gas channel, we employ Galerkin-least-
squares method for Navier-Stokes equation and streamline-diffusion scheme for water
concentration equation in our finite element approximations. Fast and convergent non-
linear iteration as well as accurate physical solutions are attained, against oscillating it-
erations with standard finite element and finite volume method and standard lineariza-
tions.

Procedures developed in this work are valid only for dry gas channel, where the
diffusivity of original water concentration equation (2.4) as well as Kirchhoff’s variable W
of reformulated water concentration equation (3.5) are mathematically continuous across
GDL/gas channel interface.
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