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A model order reduction method is developed and applied to 1D diffusion systems with
negative real eigenvalues. Spatially distributed residues are found either analytically
(from a transcendental transfer function) or numerically (from a finite element or finite
difference state space model), and residues with similar eigenvalues are grouped together
to reduce the model order. Two examples are presented from a model of a lithium ion
electrochemical cell. Reduced order grouped models are compared to full order models
and models of the same order in which optimal eigenvalues and residues are found
numerically. The grouped models give near-optimal performance with roughly 1 /20 the
computation time of the full order models and require 1000–5000 times less CPU time for
numerical identification compared to the optimization procedure.
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Introduction
In the model-based control of complex or large scale systems,
odel order reduction enables efficient controller designs. Various

eduction techniques decompose a mathematical model into
odes and sort those modes based on dominance �either magni-

ude or speed�, controllability, or observability �1–3�. Unimportant
odes may be discarded or, in the case of fast modes, retained as

tatic gains. Thermal fluid systems, exhibiting temporal and spa-
ial dependencies governed by partial differential equations
PDEs�, are infinite dimensional, making the identification of an
ccurate low order model difficult �4�. The present work focuses
n parabolic PDE system models obtained from mass or energy
onservation equations with diffusional transport. Examples in-
lude chemical vapor deposition systems �5�, snap curing ovens
6�, and electrochemical power systems �7,8�.

The response of parabolic PDE systems is generally dominated
y a finite number of slow modes and, for control purposes, the
igenspectrum of the spatial differential operator can be parti-
ioned into finite-dimensional �possibly unstable� slow and
nfinite-dimensional stable fast subspaces �9�. Using this concept,
hristophides and Daoutidis �10� developed a general approach

or robust control of quasilinear parabolic PDE systems. Galer-
in’s method approximates the PDE system as a system of ordi-
ary differential equations �ODEs�, with the ODE system trun-
ated via singular perturbations. Bhikkaji and Söderström also
educed the order of 1D �11� and 2D �12� diffusion systems via
odal truncation.
A drawback of the Galerkin and collocation and similar meth-

ds is that admissible functions must be identified prior to appli-
ation of the method, limiting them to systems defined on regular
omains. It is often unclear a priori which function or method will
ost efficiently represent a particular problem �13�. Spatial dis-

retization methods such as finite difference and finite element,
idely applicable to both regular and irregular domains, generally

esult in a high order model �10,14�. The Karhunen–Loève de-
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composition �15�, combined with the method of snapshots �16�,
provides an alternative numerical approach, identifying “empiri-
cal” eigenfunctions using time simulation results from a high or-
der spatial discretization model. With the dominant eigenfunctions
employed as basis functions in a Galerkin procedure, the low
order model accurately represents �14� and controls �17� the sys-
tem.

In the present investigation, empirical shape functions are ex-
tracted directly from a finite element or finite difference model
and used to assemble a model in eigenvalue”residue series form.
Model order is reduced by grouping or lumping together modes
with similar eigenvalues. As with the Karhunen–Loève Galerkin
procedure, eigenvalue decomposition is a necessary step in gen-
erating a reduced order model; however, in the present investiga-
tion, the finite element model itself is decomposed, rather than the
field variable time response, eliminating the need for time simu-
lation. The proposed approach, equally applicable for reduction of
analytical solutions, provides intuition as to the connection be-
tween high order exact solutions and low order empirically fitted
models.

2 Model Order Reduction Framework
We seek to generate a reduced order model �ROM� whose out-

put response y*�x , t� accurately approximates the full order model
�FOM� output response y�x , t� for any arbitrary input u�t�. In the
Laplace domain, we have input U�s�, FOM output Y�x ,s�, and
ROM output Y*�x ,s�. We restrict the work to systems with a
steady state, that is, lims→0 Y�x ,s� /U�s� is finite. Reduction is
performed in the frequency domain with design criteria of correct
steady state and �Y*�x , j��−Y�x , j�� � ��∀�� �0,2�fc�, where
fc is the desired model bandwidth.

Distributed L�
2 and L�

� norms,

L�
2 = ��

0

��
�

�ŷ�x,t��2dxdt	1/2

L�
� = max

�,t��0,��
�ŷ�x,t�� �1�

quantify time domain error, ŷ=y*−y, across spatial domain �

= 
x :x� �0,1��.
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Transcendental Transfer Function Approach
For many linear 1D diffusion systems, it is possible to analyti-

ally obtain a transcendental transfer function with an infinite
umber of poles,

Y�x,s�
U�s�

=
h�x,s�
g�s�

�2�

hich we discretize to obtain a rational �polynomial� transfer
unction of order n.

3.1 Pole/Residue Series Truncation. We decompose Eq. �2�
nto a modal series by finding the poles pk, with g�pk�=0, unit step
nput steady state impedance

Z�x� = lim
s→0

h�x,s�
g�s�

�3�

nd unit step residues

resk�x� = lim
s→pk

�s − pk�Y�x,s� = lim
s→pk

�s − pk�
h�x,s�
s · g�s�

�4�

quation �4� is valid for nonrepeated pk. The transcendental trans-
er function can be represented as the infinite series

Y�x,s�
U�s�

= Z�x� + �
k=1

�
resk�x�s
s − pk

�5�

or step input U�s�=u /s, the time domain step response is

y�x,t� = u�Z�x� + �
k=1

�

resk�x�epkt	 �6�

An obvious method of representing a transcendental transfer
unction as a rational transfer function is to truncate Eq. �5� at n
erms, yielding an nth order transfer function Y*�x ,s� /U�s�. Order

may be chosen using the following bandwidth or magnitude
riteria:

�1� pn−2�fc �p1� p2� ¯ � p�� or
�2� �resn�x� � �� ��res1 � � �res2 � � ¯ � �res� � �.

3.2 Pole/Residue Truncation+Grouping. Transcendental
ransfer functions are commonly characterized by numerous
losely spaced poles with similar residues. We partition the fre-
uency range of interest into d “bins” and lump together modes
ithin each bin. Grouping indices kf � 
0,1 ,2 , . . . ,n� are arranged

uch that 0=k0�k1� ¯ �kd=n. The grouped residue corre-
ponding to bin f � 
1,2 , . . . ,d� is

res¯ f�x� = �
k=kf−1+1

kf

resk�x� �7�

ith the corresponding residue-weighted pole

p̄f =

�
k=kf−1+1

kf

pk resk�xi�

res¯ f�xi�
�8�

esidues in Eq. �8� are evaluated at a particular location xi in the
D domain. Equation �8� places the grouped pole near the mode
ith dominant response and allows closely spaced modes with
pposite sign residues to cancel one another. The grouping proce-
ure yields the dth order transfer function

Y*�x,s�
U�s�

= Z�x� + �
d

res¯ f�x�s
s − p̄f

�9�

f=1
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3.3 Pole/Residue Optimization. To assess the efficiency of
the grouping method, we generate dth order ROMs in which op-
timal poles p� f and residues res� i,f are found numerically to mini-
mize the frequency response cost functional

J = �
k=1

n�

�
i=1

nx

�Re„Y*�xi, j�k� − Y�xi, j�k�…�2

+ �Im„Y*�xi, j�k� − Y�xi, j�k�…�2 �10�

Unlike Eq. �9�, the numerical residues are found at discrete loca-
tions xi and hold no connection to the analytical solution.

4 State Space Approach
When an analytical transfer function is inconvenient or unavail-

able, then a linear single-input multiple-output state space model
with m states and m outputs,

ẋ = Ax + Bu

y = Cx + Du �11�

can be obtained using finite element or finite difference methods.
We desire a ROM with n states �n�m� and m outputs.

4.1 Eigenvalue/Residue Series Truncation. Similar to Sec.
3, the FOM transfer matrix can be represented in eigenvector/
residue series form

Y�s�
U�s�

= Z + �
k=1

m
rks

s − �k
�12�

The m	1 steady state vector is

Z = − CA−1B + D �13�

We define the m	1 right eigenvector qk with Aqk=�kqk and the
1	m left eigenvector pk with pkA=�kpk. Provided all eigenval-
ues of A are distinct and pkqk=1, the m	1 unit step input residue
vector is

rk =
CqkpkB

�k
�14�

The state space model �Eq. �11�� is transformed to modal form
with

Â = diag��1 �2 ¯ �m�

B̂ = �1 1 ¯ 1�T

Ĉ = �r1�1 r2�2 ¯ rm�m�

D̂ = �Z + �
k=1

m

rk	 = D �15�

A detailed derivation of Eqs. �14� and �15� is given in a disserta-
tion �18�.

Again, we may reduce the mth order model by truncating Eq.
�15� at n terms, yielding an nth order state space model defined
with matrices A*, B*, C*, and D* of dimensions n	n, n	1, m
	n, and m	1, respectively.

4.2 Eigenvalue/Residue Truncation+Grouping. Similar to
Sec. 3.2, We Define the m	1 grouped residue vector as

r̄ f = �
k=kf−1+1

kf

rk �16�
and the grouped eigenvalue as
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�̄ f =

�
k=kf−1+1

kf

�kri,k

r̄i,f

�17�

here ri,k corresponds to spatial location xi. The grouping proce-
ure yields a dth order state space model defined with matrices
*, B*, C*, and D* of dimensions d	d, d	1, m	d, and m
1, respectively.

4.3 Eigenvalue/Residue Optimization. We numerically

olve for optimal eigenvalues �� f and residue vectors r� f which
inimize the error cost functional

J = �
k=1

n�

�
i=1

nx

�Re„Yi
*�j�k� − Yi�j�k�…�2 + �Im„Yi

*�j�k� − Yi�j�k�…�2

�18�

here Yi
* and Yi are the ith outputs of the dth order ROM and the

th order FOM, respectively.

Examples
We illustrate the model order reduction technique using two

xamples arising from Li conservation within a 6 A h Li-ion hy-
rid electric vehicle �HEV� battery�19�. In the first example, solid
tate diffusion, we apply the model order reduction methods from
ec. 3 to an analytical solution. For the second example, electro-

yte phase diffusion, composite geometry of the electrode/
eparator/electrode sandwich makes analytical treatment cumber-
ome. We use the finite element method to derive a state space
odel and reduce its order using the methods from Sec. 4.

5.1 Li-Ion Solid State Diffusion. A schematic of the solid
tate diffusion problem is shown in Fig. 1. The distribution of Li
oncentration cs�r , t� within a spherical electrode active material
article is described by

�cs

�t
=

Ds

r2

�

�r
�r2�cs

�r
� �19�

ith symmetry at the particle center,

� �cs

�r
�

r=0
= 0 �20�

nd a time-dependent boundary condition at the particle surface,

− Ds� �cs

�r
�

r=Rs

=
jLi�t�
asF

�21�

here Ds is the diffusion coefficient, jLi�t� is the volumetric reac-

Fig. 1 Solid state diffusion problem for Li-ion cell
ion current, as is the specific interfacial surface area, and F is

ournal of Dynamic Systems, Measurement, and Control
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Faraday’s constant. We seek a ROM with input jLi�t� and surface
concentration output cs,e�t�=cs�Rs , t�.

From Eqs. �19�–�21�, Jacobsen and West �20� found the tran-
scendental transfer function

Cs,e�s�
JLi�s�

=
1

asF
� Rs

Ds
�� tanh�
�

tanh�
� − 

	 �22�

with 
=Rs
�s /Ds. We remove the eigenvalue at the origin by sub-

tracting off the bulk response Cs,av�s� /JLi�s�=−3 / �RsasFs�. Defin-
ing �Cs,e�s�=Cs,e�s�−Cs,av�s�, the new transfer function

�Cs,e�s�
JLi�s�

=
1

asF
� Rs

Ds
�� �
2 + 3�tanh�
� − 3



2
„tanh�
� − 
…

	 �23�

has finite steady state. Following model order reduction, the bulk
response is reintroduced, giving a low order approximation to Eq.
�23� that satisfies Li conservation.

Equation �23� is decomposed into a modal series following the
procedure in Sec. 3.1. The poles of Eq. �23� are

pk = − Ds� �k

Rs
�2

�24�

where �k are roots of tan��k�=�k not including �0=0. The residues
are

resk =
− 2

asFRspk
�25�

and the steady state solution is

Z =
− Rs

5asFDs
�26�

Substituting Eqs. �24�–�26� into Eq. �5� yields an infinite series
transfer function algebraically equivalent to Eq. �23�.

Property values used in the present model, defined in Table 1,
are typical of solid state diffusion in electrochemical cells. The
characteristic time tRs

2 /Ds=5000 s indicates that it can take
over an hour for solid phase concentration gradients to relax. High
power HEV batteries, however, may become solid state transport
limited in as little as 5 s �19�. To capture these disparate time
scales, we approximate dynamics from steady state to fc=10 Hz.

Figure 2 plots poles, Eq. �24�, versus residues, Eq. �25�, with
the slowest pole �and largest residue� of the analytical solution
located at −4.04	10−3 rad /s. Faster poles are spaced progres-
sively closer together and, in the lower left corner of Fig. 2, dis-
crete pole/residue pairs appear as almost a continuum of points.
Retaining all poles pk�−20� yields a 178th order model, dem-
onstrating that truncation �Sec. 3.1� can result in high model order.

The grouping approach �Sec. 3.2� is motivated by the observa-
tion that analytical poles in Fig. 2 are tightly spaced with similar
residues. Brackets partition the real axis into d bins of equal loga-
rithmic width, with the slowest bracket at p1 /2 and the fastest
bracket at −4�fc. Fifth order grouped pole/residue pairs, calcu-
lated with Eqs. �7� and �8�, are plotted with circles in Fig. 2.
Optimal pole/residue pairs, numerically identified by minimizing
Eq. �10�, share similar locations.

Figure 3 compares the frequency response of a truncated model
and two grouped models with the exact frequency response, Eq.

Table 1 Solid state diffusion model parameters

Parameter Value

Diffusion coefficient Ds �cm2 /s� 2.0	10−12

Particle radius Rs �m� 1.0
Specific interfacial area as �cm2 /cm3� 17,400
Faraday’s constant F �A s/mol� 96,487
�23�. The 180 term truncated series approximation matches the

JANUARY 2008, Vol. 130 / 011012-3
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xact magnitude and phase until near 10 Hz where the phase
ngle diverges from the exact solution. Third and fifth order
rouped models have similar characteristics, with the fifth order
odel producing a better match. The phase angle for the grouped
odels has the qualitative appearance of a curve fit.
Figure 4 compares the unit step response of a fifth order

rouped model and a fifth order optimal model to a high order
runcated “truth” model. Initially, the optimal model has a larger

Fig. 2 Solid state diffusion poles a
grouped „�…, and fifth order optimal
shown with vertical dotted lines.

Fig. 3 Truncated and grouped solid
quency response: Exact „�…, 180th or
and 5th order grouped „—…. „a… Magn

Li
�„�Cs,e„s… /J „s…….

11012-4 / Vol. 130, JANUARY 2008
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percentage error than the grouped model. The optimal error, how-
ever, more quickly decays to zero. The L2 and L� norms of surface
concentration step response decrease with increasing model order
for both types of ROMs �18�. Optimal models give slightly im-
proved performance compared to grouped models but are more
computationally expensive to identify.

5.2 Li-Ion Electrolyte Phase Diffusion. A schematic of the

residues: Analytical „·…, fifth order
…. Fifth order grouping brackets are

te diffusion ROMs versus exact fre-
truncated „·…, 3rd order grouped „-·…,

de, ��Cs,e„s… /JLi
„s…�. „b… Phase angle,
nd
„�
sta
der
itu
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econd example, electrolyte diffusion, is shown in Fig. 5. The
istribution of electrolyte concentration ce�x , t� across the 1D Li-
on cell is described by

���ece�
�t

=
�

�x
�De

�

�x
ce� +

1 − to

F
jLi �27�

ith zero flux conditions at the cell boundaries,

� �ce

�x
�

x=0
= � �ce

�x
�

x=Lcell

= 0 �28�

here �e is the electrolyte phase volume fraction, De is the diffu-
ion coefficient, t0 is the transference number, F is Faraday’s con-
tant, and jLi is the current density of the electrochemical reaction
t the solid/electrolyte interface. Model parameters are defined in

Fig. 4 Grouped and optimal solid st
model unit step response: 1000th ord
and 5th order optimal „-·…

ig. 5 Electrolyte phase diffusion problem for Li-ion cell with

niform reaction current distribution
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Table 2. A Bruggeman relationship, De=De
ref�e

1.5, corrects the ref-
erence diffusion coefficient for the tortuous path Li+ ions follow
through the porous media. We consider only the simple case of
uniform current density across each electrode, allowing current
density to equal total current I divided by electrode volume. Prop-
erties �e and De and source term jLi have different values in the
negative electrode, separator, and positive electrode regions, as
follows:

De− = De
ref�e−

1.5 j−
Li =

I

AL−
�negative electrode�

De,sep = De
ref�e,sep

1.5 jsep
Li = 0 �separator�

De+ = De
ref�e+

1.5 j+
Li =

− I

AL+
�positive electrode�

Analytical treatment would require three individual solutions con-
nected by concentration and flux matching conditions at the nega-
tive electrode/separator and separator/positive electrode inter-
faces. The finite element method is more convenient because the
assembly process automatically satisfies internal matching
conditions.

The m	1 vector ce�t� approximates ce�x , t� at discrete node
points, x=xi, where i� 
1,2 , . . . ,m�. The state space representa-
tion of Eq. �27� is

diffusion ROMs versus higher order
truncated „�…, 5th order grouped „-…,

Table 2 Electrolyte phase diffusion model parameters

Parameter Value

Diffusion coefficient De
ref �cm2 /s� 2.6	10−6

Transference number to 0.363
Electrode plate area A �cm2� 10,452

Negative
electrode

Separator Positive
electrode

Porosity �e 0.332 0.5 0.330
Thickness L �m� 50 25 43
ate
er
JANUARY 2008, Vol. 130 / 011012-5
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ċe = − M−1Kce + M−1FI �29�

here M, K, and F are the mass, stiffness, and forcing matrices,
espectively �21�. To enforce species conservation and remove a
ole/zero cancellation at the origin, we define a new field variable,
ce�x , t�=ce�x , t�−ce�0, t�, and Eq. �29� becomes

�ċe = − �M−1K���ce + �M−1F��I �30�

ith states x=�ce, the �m−1�th order state variable model, Eq.

Fig. 6 Electrolyte phase diffusion ei
order finite element rm,k>0 „�… and rm,
and r̄m,k<0 „�…. Third order grouping
lines.

Fig. 7 Truncated and grouped electro
order model frequency response at x=
order truncated „·…, and 3rd order grou

„b… Phase angle, �„�Ce„Lcell ,s… / I„s…….

11012-6 / Vol. 130, JANUARY 2008
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�11�, is defined by A=−�M−1K��, B= �M−1F��, C=I, and D=0.
The present example spatially discretizes the 1D domain with

45 linear basis elements. It is common modeling practice to per-
form a grid independence test to check whether spatial discretiza-
tion has been performed with a fine enough mesh. Results from a
coarse mesh model are compared to those from a fine mesh model
to validate the lower order model. Here, the grouping method
efficiently produces low order models from the high order models

values and residues at x=Lcell: 45th
„·… and 3rd order grouped r̄m,k>0 „�…

ckets are shown with vertical dotted

phase diffusion ROMs versus higher
ell: 45th order finite element „�…, 28th
„-…. „a… Magnitude, ��Ce„Lcell ,s… / I„s…�.
gen
k<0
bra
lyte
Lc

ped
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ssociated with fine meshes.
Figure 6 plots eigenvalues of the A matrix versus residues, Eq.

14�, at the location x=Lcell. To distinguish the sign of each resi-
ue on the log-log plot, Fig. 6 uses different symbols for residues
ith positive magnitude versus those with negative magnitude. In
q. �27�, the source term in the negative electrode is offset by a
ink term in the positive electrode. Adjacent residues in Fig. 6
enerally have alternating signs, causing near pole/zero cancella-
ions and further motivating the grouping method. Figure 6 also
hows eigenvalue/residue pairs corresponding to a third order
rouped model.

Figure 7 compares the frequency response of a model truncated
t 10 Hz and a third order grouped model with the FOM fre-
uency response. Results shown are at x=Lcell, but the third order
rouped model provides similar accuracy across the entire spatial
omain. Figure 8 compares the unit step response of a third order
rouped model and a third order optimal model with the full finite
lement model across the entire spatial domain. Small differences
etween the grouped and optimal models occur near the separator
egion.

The L�
2 and L�

� norms, evaluated from unit step response simu-
ation results, are displayed in Table 3 and provide a quantitative

Fig. 8 Grouped and optimal electroly
order model unit step response: 45
grouped „-…, and 3rd order optimal „·…

Table 3 Electrolyte phase diffusion ROM error norms

odel
rder

Reduction
method

Electrolyte concentration
�10−7 mol /cm3�

L�
� L�

�

Grouped 0.821 4.90
Optimal 0.820 4.89

Grouped 0.1601 1.161
Optimal 0.1435 1.098

Grouped 0.1618 1.167
Optimal 0.0163 0.082
ournal of Dynamic Systems, Measurement, and Control
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metric of performance across the entire 1D domain. In general, the
grouped residue models are near optimal and the grouped model
performance improves as model order is increased. An exception
is noted in Table 3, where the fourth order grouped model shows
worse performance than the third order grouped model and is far
from optimal. Here, our simple approach of partitioning the
eigenspectrum with logarithmic evenly spaced brackets has not
yielded the best possible fourth order grouped model. By manu-
ally adjusting the bracket placement, however, we are able to ob-
tain other fourth order grouped models with near-optimal perfor-
mance.

6 Conclusions
Residue grouping is a convenient method for combining closely

spaced modes of a distributed parameter system with negative real
eigenvalues. In traditional finite element or finite difference model
grid generation, discretization presents a trade-off between model
size and spatial resolution, with the former impacting execution
speed and numerical stability. Using the approach in this paper to
reduce the order of a model generated with very fine mesh grid, a
low order model can be obtained with good spatial resolution.

Reduced order grouped models are shown to provide near-
optimal performance, matching full order simulation results to
within 6.3% for the fifth order solid state diffusion model and
1.2% for the third order electrolyte diffusion model. Compared to
the 180th order truncated solid state diffusion model and the 45th
order finite element electrolyte diffusion model, these grouped
models execute 36 times and 15 times faster, respectively. The
grouping procedure identifies these models using just 0.01 s and
0.07 s CPU times on a 1200 MHz Pentium III processor, com-
pared to 8.1 s and 390 s, respectively, for the optimization proce-
dure.

Model order reduction is performed in the frequency domain,
and for control applications where only an approximate linear
model is required �10�, one may quickly obtain low order models
with reasonable accuracy across a wide frequency range. Similar
to the Karhunen–Loève Galerkin procedure �14�, a high order

phase diffusion ROMs versus higher
order finite element „�…, 3rd order
te
th
analytical or numerical model is required; however, in the present
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Downloa
ethod, eigenvalue decomposition is performed directly on the
odel, rather than time simulation data, reducing computation and
aintaining a tighter connection between the parameters of the

ull and reduced models.

cknowledgment
This work was performed at the Pennsylvania State University

lectrochemical Engine Center. The authors gratefully acknowl-
dge funding provided by the U.S. Department of Energy Gradu-
te Automotive Technology Education �G.A.T.E.� program
hrough the Pennsylvania Transportation Institute.

eferences
�1� Chen, C. T., 1999, Linear System Theory and Design, Oxford University Press,

New York.
�2� Jamshidi, M., 1983, Large Scale Systems, North-Holland, New York.
�3� Kokotovic, P. V., Khalil, H. K., and O’Reilly, J., 1986, Singular Perturbations

in Control: Analysis and Design, Academic, London.
�4� Ray, W. H., 1981, Advanced Process Control, McGraw-Hill, New York.
�5� Theordoropoulou, A., Adomaitis, R. A., and Zafiriou, E., 1998, “Model Re-

duction for Optimization of Rapid Thermal Chemical Vapor Deposition Sys-
tems,” IEEE Trans. Semicond. Manuf., 11, pp. 85–98.

�6� Deng, H., Li, H. X., and Chen, G., 2005, “Spectral-Approximation-Based In-
telligent Modeling for Distributed Thermal Processes,” IEEE Trans. Control
Syst. Technol., 13, pp. 686–700.

�7� Doyle, M., Fuller, T., and Newman, J., 1993, “Modeling of Galvanostatic
Charge and Discharge of the Lithium/Polymer/Insertion Cell,” J. Electrochem.
Soc., 140, pp. 1526–1533.

�8� Um, S., Wang, C. Y., and Chen, K. S., 2000, “Computational Fluid Dynamics

Modeling of Proton Exchange Membrane Fuel Cells,” J. Electrochem. Soc.,

11012-8 / Vol. 130, JANUARY 2008

ded 11 Jan 2008 to 130.203.224.205. Redistribution subject to ASM
147, pp. 4485–4493.
�9� Christophides, P. D., and Daoutidis, P., 1997, “Finite Dimensional Control of

Parabolic PDE Systems Using Approximate Inertial Manifolds,” J. Math. Anal.
Appl., 216, pp. 398–420.

�10� Christophides, P. D., 2001, Nonlinear and Robust Control of PDE Systems—
Methods and Applications to Transport-Reaction Processes, Birkhauser, Bos-
ton.

�11� Bhikkaji, B., and Söderström, T., 2001, “Reduced Order Models for Diffusion
Systems Using Singular Perturbations,” Energy Build., 33, pp. 769–781.

�12� Bhikkaji, B., Mahata, K., and Söderström, T., 2004, “Reduced Order Models
for a Two-Dimensional Heat Diffusion System,” Int. J. Control, 77, pp. 1532–
1548.

�13� Bhikkaji, B., and Söderström, T., 2001, “Reduced Order Models for Diffusion
Systems,” Int. J. Control, 74, pp. 1543–1557.

�14� Park, H. M., and Cho, D. H., 1996, “The Use of the Karhunen-Loève Decom-
position for the Modeling of Distributed Parameter Systems,” Chem. Eng. Sci.,
51, pp. 81–98.

�15� Loève, M., 1955, Probability Theory, Van Nostrand, Princeton, NJ.
�16� Sirovich, L., 1987, “Turbulence and the Dynamics of Coherent Structures,

Parts I–III,” Q. Appl. Math., 45�3�, pp. 561–590.
�17� Park, H. M., and Kim, O. Y., 2000, “A Reduction Method for the Boundary

Control of the Heat Conduction Equation,” ASME J. Dyn. Syst., Meas., Con-
trol, 122, pp. 435–444.

�18� Smith, K. A., 2006, “Electrochemical Modeling, Estimation, and Control of
Lithium Ion Batteries,” Ph.D. thesis, The Pennsylvania State University, Uni-
versity Park.

�19� Smith, K., and Wang, C. Y., 2006, “Solid State Diffusion Effects on Pulse
Operation of a Lithium Ion Cell for Hybrid Electric Vehicles,” J. Power
Sources, 161, pp. 628–639.

�20� Jacobsen, T., and West, K., 1995, “Diffusion Impedance in Planar, Cylindrical
and Spherical Geometry,” Electrochim. Acta, 40, pp. 255–262.

�21� Baker, A. J., and Pepper, D. W., 1991, Finite Elements 123, McGraw-Hill,

New York.

Transactions of the ASME

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm


