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Abstract

Lithium ion (Li-ion) batteries provide high energy and power density energy storage for diverse applications ranging from cell phones
to hybrid electric vehicles (HEVs). For efficient and reliable systems integration, low order dynamic battery models are needed. This
paper introduces a general method to generate numerically a fully observable/controllable state variable model from electrochemical
kinetic, species and charge partial differential equations that govern the discharge/charge behavior of a Li-ion battery. Validated against
a 313th order nonlinear CFD model of a 6 Ah HEV cell, a 12th order state variable model predicts terminal voltage to within 1% for
pulse and constant current profiles at rates up to 50 C. The state equation is constructed in modal form with constant negative real eigen-
values distributed in frequency space from 0 to 10 Hz. Open circuit potential, electrode surface concentration/reaction distribution cou-
pling and electrolyte concentration/ionic conductivity nonlinearities are explicitly approximated in the model output equation on a local,
electrode-averaged and distributed basis, respectively. The balanced realization controllability/observability gramian indicates that the
fast electrode surface concentration dynamics are more observable/controllable than the electrode bulk concentration dynamics (i.e. state
of charge).
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Batteries directly contribute to the advancement of tech-
nologies ranging from portable electronics to fuel efficient
vehicles. Model based battery monitoring algorithms, of
particular importance in high power applications, use cur-
rent and voltage measurements to estimate state of charge
(SOC), available power and state of health (SOH) with
interacting systems basing control action upon these esti-
mates [1,2]. Despite increased cost, hybrid power system
designs must often employ conservative, oversized batteries
due to imprecise estimations. Development of an accurate
online dynamic battery model is difficult given the nonlin-
ear, infinite dimensional, distributed mass transport pro-
cesses governing electrochemical system dynamics [3,4].
Empirical battery models are often favored for their low
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order (2–5 states) and relative ease of identification
[1,5,6]. Fundamental models, presumably offering better
accuracy, are rarely employed in real time due to their high
order (30–100 states) [7,8]. The objective of the present
work is to develop a fundamental lithium-ion (Li-ion) bat-
tery model in a low order state variable form that is prac-
tical for real time application.

Diffusive mass transport processes, with an infinite num-
ber of negative real eigenvalues [9], cause batteries to
respond across a range of time scales. Karden et al. report
battery dynamics as slow as 35 lHz [10], while at very high
rates, Smith and Wang show that a hybrid electric vehicle
(HEV) cell may become solid state diffusion limited in sec-
onds [11]. Equivalent circuit models with just 2–3 states
cannot be expected to predict accurately the current/volt-
age behavior across such disparate time scales. By neglect-
ing fast dynamics however, these empirical models may
accurately predict low rate discharge behavior [12], or, by
neglecting slow dynamics, high rate perturbations within
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a small SOC range [13]. In the literature, empirical model
parameters are commonly fitted to a representative data
set with little discussion of model bandwidth and region
of validity (SOC range, admissible current inputs etc.). In
addition, these models can only be used after a battery
has been built and tested and are unavailable during the
design process.

Fundamental battery models, derived for the Li-ion
chemistry from porous electrode and concentrated solution
theories [14,15], mathematically describe charge and spe-
cies transport in the solid (electrode active material) and
electrolyte phases across a simplified 1D cell structure.
Solved numerically in a computational fluid dynamics
(CFD) framework, the coupled partial differential equa-
tions (PDEs) are spatially discretized (via finite difference,
Galerkin or similar method) and the resulting set of ordin-
ary differential equations (ODEs) is solved iteratively. For
real time applications, slow and possibly non-convergent
execution is unacceptable, and a fast and reliable approxi-
mate model is sought. Tenno et al. [7] sequentially solve
diagonal ODE systems representing lead acid battery dis-
tributed concentrations/potentials and use a PID (propor-
tional-integral-derivative) controller to tune model states to
match current/voltage measurements during slow dis-
charge. For nickel metal-hydride battery SOC estimation,
Fig. 1. Schematic o
Barbarisi et al. [8] neglect the electrolyte phase and negative
electrode solid state transport, assume uniform reaction
current and discretize the positive electrode solid state dif-
fusion PDE to a 32nd order system of ODEs. Model order
reduction techniques, performed in the time [16,17] or fre-
quency [9] domain, offer potential to reduce further the
model order and avoid restrictive assumptions.

In this paper, Section 2 summarizes the 1D electrochem-
ical model equations and derives an impedance (frequency
domain) model under the assumptions of quasi-linear
behavior and local reaction current decoupled from elec-
trolyte concentration. Section 3 reduces the impedance
model transfer functions/matrices to low order SIMO (sin-
gle input multiple output) state variable models (SVMs) [9].
Section 4 presents SVM simulation results for a 6 Ah Li-
ion HEV cell, comparing internal reaction and concentra-
tion distributions and external current/voltage behavior
to a high order nonlinear CFD model [11].

2. Model

Fig. 1 shows a schematic of the Li-ion cell consisting of
three domains: the negative composite electrode, separator
and positive composite electrode. During discharge, Li ions
diffuse to the surface of LixC6 active material particles
f a Li-ion cell.
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(solid phase) in the negative electrode where they undergo
electrochemical reaction and transfer into a liquid or gelled
electrolyte solution (electrolyte phase). The positively
charged ions travel through the electrolyte solution via dif-
fusion and ionic conduction to the positive electrode where
they react and diffuse towards the inner regions of metal
oxide active material particles (solid phase). The porous
separator serves as an electronic insulator, forcing electrons
to follow an opposite path through an external circuit or
load. Both composite electrodes contain binder and filler
(not shown in Fig. 1) to enhance electron transport across
the solid matrix. End of discharge/charge, accompanied by
sudden voltage decay/rise, occurs when the solid phase Li
concentrations at either electrode surface become saturated
or depleted, or electrolyte phase Li concentration becomes
depleted in either electrode.
2.1. Governing equations

We provide a brief summary of the model governing
equations derived in Refs. [14,15] and applied in Ref.
[11]. Composite electrodes are modeled using porous elec-
trode theory, meaning that the solid and electrolyte phases
are treated as superimposed continua without regard to
microstructure. Conservation of Li in a single spherical
active material particle is described by Ficks law of
diffusion,

ocs

ot
¼ Ds

r2

o

or
r2 ocs

or

� �
; ð1Þ

with boundary conditions
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r¼0
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In Eqs. (1)–(3), c represents Li concentration, and the sub-
script s denotes the solid phase. Ds is the solid phase diffu-
sion coefficient, jLi the volumetric rate of electrochemical
reaction at the particle surface (with jLi > 0 indicating ion
discharge), as the specific interfacial surface area and F is
Faraday’s constant (96,487 C/mol). For spherical active
material particles of radius Rs occupying electrode volume
fraction es, the interfacial surface area is as = 3es/Rs. Eqs.
(1)–(3) are applied on a continuum basis across each elec-
trode, giving the solid phase concentration a 2D spatial
dependency, i.e. cs(x, r, t) where x is the particle position,
r is the radial position within a particle and t is time. The
electrochemical model depends only upon concentration
at the particle surface, cs,e(x, t) = cs(x, Rs, t), where the sub-
script s, e denotes the solid/electrolyte interface.

Conservation of Li in the electrolyte phase yields
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with zero flux boundary conditions at the current
collectors,
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where ce(x, t) is electrolyte phase Li concentration, ee is
electrolyte phase volume fraction and t0

þ is the transference
number of Li+ with respect to the velocity of solvent. The
effective diffusion coefficient is calculated from a reference
coefficient using the Bruggeman relation Deff

e ¼ Deep
e that

accounts for the tortuous path that Li+ ions follow through
the porous media. Eq. (4) assumes constant t0

þ.
Charge conservation in the solid phase of each electrode

is described by Ohm’s law
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and zero electronic current at the separator,
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In Eqs. (6)–(8), /s(x, t) and reff are the potential and effec-
tive conductivity of the solid matrix, respectively, with reff

evaluated from the active material reference conductivity r
as reff = res. A is electrode plate area, and I(t) is the applied
current following the sign convention that a positive cur-
rent discharges the battery.

Electrolyte phase charge conservation yields
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In Eqs. (9), (10), /e(x, t) is the electrolyte phase potential
and jeff the effective ionic conductivity, calculated from
the Bruggeman relation jeff ¼ jep

e . Derived from concen-
trated solution theory, the effective diffusional conductivity
is

jeff
D ¼

2RTjeff

F
ðt0
þ � 1Þ 1þ d ln f�

d ln ce

� �
ð11Þ

where R is the universal gas constant (8.3143 J/mol K), T is
temperature and f± is the activity coefficient, assumed in
the present work to be constant.

The four governing PDEs (1), (4), (6) and (9) describing
field variables, cs,e, ce, /s and /e, are coupled by the Butler–
Volmer electrochemical kinetic expression

jLi ¼ asi0 exp
aaF
RT

g

� �
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RT
g
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: ð12Þ
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In Eq. (12), jLi is driven by overpotential, g, defined as the
difference between solid and electrolyte phase potentials
minus the thermodynamic equilibrium potential, U, of
the solid phase

g ¼ /s � /e � U : ð13Þ
Equilibrium potential, U(cs,e), is evaluated as a function of
the solid phase concentration at the particle surface. In Eq.
(12), exchange current density, i0, is related to both solid
surface and electrolyte concentrations according to

i0 ¼ kðceÞaaðcs;max � cs;eÞaaðcs;eÞac ð14Þ
where k is a kinetic rate constant, and aa and ac are the
anodic and cathodic transfer coefficients, respectively.

With boundary conditions applied galvanostatically,
Eq. (7), the cell current, I(t), is the model input. Voltage
across the cell terminals is calculated as

V ðtÞ ¼ /sðL; tÞ � /sð0; tÞ �
Rf

A
IðtÞ ð15Þ

where Rf is an empirical contact resistance. The nonlinear
governing PDEs and constitutive relationships are numer-
ically solved within a computational fluid dynamics
(CFD) framework as described in Ref. [11]. In Section 4,
this ‘‘CFD model’’ is used to assess the accuracy of low or-
der SVMs.

2.2. Impedance model formulation

We manipulate the governing equations to derive ana-
lytical transfer functions in Section 2.2.1 and numerical
transfer matrices in Section 2.2.2 describing the output
response of the impedance model field variables �cs;eðx; sÞ,
�ceðx; sÞ, �/sðx; sÞ and �/eðx; sÞ to an input current, �IðsÞ. Indi-
vidual submodel responses are combined to form the volt-
age response, V ðsÞ, in Section 2.2.3. In preparation for the
model order reduction procedure (introduced in Section 3),
we modify the transfer functions/matrices as necessary to
give them finite steady state solutions. The impedance
model assumptions are:

(i) Linear behavior (i.e. constant properties), and
(ii) Reaction current, �jLiðx; sÞ, decoupled from electrolyte

concentration, �ceðx; sÞ.

For other fundamental impedance models, see Refs. [18–
20] and the references therein.

2.2.1. Electrode submodel
Taking the Laplace transform of Eq. (1) and solving it

with respect to boundary conditions equations (2) and
(3), Jacobsen and West [19] give the solid state diffusion
impedance of a spherical active material particle
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where b ¼ Rs

ffiffiffiffiffiffiffiffiffiffi
s=Ds

p
. Linearization of the Butler–Volmer

kinetic relationship equation (12) yields
�g ¼ Rct

as

�jLi ð17Þ

with charge transfer resistance, Rct = RT/[i0F(aa + ac)].
Define the dimensionless spatial variable z = x/d, where

d is the electrode thickness, z = 0 represents the current col-
lector interface and z = 1 represents the separator interface.
The solid phase charge conservation equation (6) linearized
and expressed as a function of z, is
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Consistent with assumption (ii), we neglect the 2nd term on
the left hand side of electrolyte charge conservation equa-
tion (9) and assume constant jeff, yielding
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We subtract Eqs. (21)–(23) from Eqs. (18)–(20) to arrive
at a single static ODE for phase potential difference,
/s–e = /s � /e,
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Phase potential difference may be expressed as a function
of overpotential, and thus reaction rate, as

�/s–e ¼ �g� U ¼ Rct

as

�jLi � U ð26Þ

Express the equilibrium potential impedance using the dif-
fusional impedance transfer function equation (16) to yield

�/s–eðsÞ ¼
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valid for small perturbations in cs,e where oU/ocs is approx-
imately constant. Combining Eq. (27) with Eq. (24), we
eliminate �jLi to obtain an ODE in �/s–e
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with boundary conditions
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Eqs. (28) and (29) may now be solved analytically to
provide distributed transfer functions for physiochemical
variables. Define dimensionless variable m as
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and we have transcendental transfer functions
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where, in Eq. (34), the bulk electrode solid phase concen-
tration response is

�cs;avgðsÞ
IðsÞ

¼ � 1

dAesF
1

s
: ð35Þ

Eqs. (31)–(34) have finite steady state and negative real
eigenvalues. By defining solid surface concentrations as
the difference Dcs,e(z, t) = cs,e(z, t) � cs,avg(t), we have
removed an eigenvalue at the origin from �cs;eðz; sÞ=IðsÞ.
Eqs. (31)–(35) are written for the negative electrode. To
obtain transfer functions for the positive electrode, multi-
ply by �1. Ong and Newmann [20] present a similar solu-
tion to Eq. (31) including high frequency double layer
capacitance dynamics but neglecting low frequency diffu-
sional impedance. The double layer capacitive effect, rele-
vant on the millisecond time scale, may be included in
Eqs. (31)–(34) with minor modification of Eq. (30), neces-
sary only if the desired battery model bandwidth is greater
than �100 Hz.

2.2.2. Electrolyte submodel

The previous section derived analytical transfer func-
tions in a single electrode region. In electrolyte phase con-
servation equations (4) and (9), parameters ee, jeff and Deff

e

take on different values in the negative electrode, separator
and positive electrode regions, making analytical treatment
cumbersome. We use the finite element method to obtain
spatially discretized transfer matrices with solutions at
node points xi across the 1D domain.

The source term jLi(x, t) in Eqs. (4) and (9) is approxi-
mated as the ncell · 1 vector jLi(t). The Laplace transform
of jLi(t) is constructed by applying Eq. (32) at discrete loca-
tions in the negative and positive (with proper sign) elec-
trodes and setting separator node points to zero

�jLiðsÞ ¼ ½�jLi
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� ðxn� ; sÞ; 0; . . . ; 0;�jLi
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. . . ;�jLi
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; sÞ�T: ð36Þ

Finite element discretization of the electrolyte phase diffu-
sion equation (4) yields

Mce
_ceðtÞ ¼ �Kce ceðtÞ þ Fce j

LiðtÞ ð37Þ
where Mce , Kce and Fce are the mass, stiffness and forcing
matrices, respectively [21]. Laplace transform of Eq. (37)
yields the transfer matrix
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�1

Fce

�jLiðsÞ
IðsÞ

: ð38Þ

Eq. (38) contains an eigenvalue/zero cancellation at the
origin, which we eliminate by defining Dce(x, t) =
ce(x, t) � ce(0, t). The transfer matrix
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IðsÞ

¼
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IðsÞ
ð39Þ

contains no eigenvalue/zero at the origin. Following reduc-
tion, ce(x, t) is recovered by enforcing charge conservation
across the cell to find ce(0, t),
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1

L

Z L

0
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The electrolyte phase charge conservation equation (9) is
linearized to
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and spatially discretized to

�K/I
e
ueðtÞ � K/II

e
ceðtÞ þ F/e

jLiðtÞ ¼ 0: ð42Þ

The electrolyte phase potential, having no absolute refer-
ence, is given one by defining D/e(x, t) = /e(x, t) � /e(0, t),
thus fixing D/e(0, t) = 0. We subtract the (1, 1) element of
K/I
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to produce a transfer matrix approximating D�/eðx; sÞ at
discrete node points xi,
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2.2.3. Current/voltage model

Substituting Eq. (13) into Eq. (15), the voltage equation
is expanded as

V ðtÞ ¼ /eðL; tÞ � /eð0; tÞ þ gðL; tÞ � gð0; tÞ

þ Uþðcs;eðL; tÞÞ � U�ðcs;eð0; tÞÞ �
Rf

A
IðtÞ: ð45Þ

After Laplace transform, the voltage response of the linear
impedance model is
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with individual terms arising due to bulk concentration, or
open circuit voltage dynamics,
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negative electrode solid state diffusion dynamics,
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positive electrode solid state diffusion dynamics,
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and electrolyte phase diffusion dynamics,
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¼ D�/Dce
e ðL; sÞ
IðsÞ

: ð50Þ

In defining Eqs. (48)–(50), we have used superposition to
break up Eq. (44) into individual components D�/jLi

�
e , D�/

jLi
þ

e

and D�/Dce
e , recognizing that each is a static gain on top of

�j Li
� ðx; sÞ=IðsÞ, �jLi

þ ðx; sÞ=IðsÞ and D�ceðx; sÞ=IðsÞ dynamics,
respectively.

3. Model order reduction

3.1. Impedance model

Given a full order impedance model transfer matrix
�yðsÞ=IðsÞ, the reduced order transfer matrix [9] is defined
to be

�y�ðsÞ
IðsÞ

¼ Zþ
Xn

k¼1

rks
s� kk

: ð51Þ

In Eq. (51), kk and rk are numerically generated eigenvalues
and nx · 1 residue vectors, respectively. The nx · 1 steady
state vector, Z, is obtained directly from the full order
model as Z ¼ lims!0�yðsÞ=IðsÞ. Defining the error between
the reduced and full order models as b�yðsÞ ¼ �y�ðsÞ � �yðsÞ,
the remaining model parameters p ¼ ðkk; r

T
k Þ
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by numerically minimizing the frequency response cost
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across the desired frequency bandwidth x 2 [0, 2pfc] with
nx observations and 1D spatial domain x 2 [0, L] with nx

observations. We quantify the error attributable to imped-
ance model order reduction using error norms
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3.2. State variable realization

Using the nth order model parameters ðZT; kk; r
T
k Þ

T, we
obtain the nth order time domain SVM

_xðtÞ ¼ AxðtÞ þ BIðtÞ
y�ðtÞ ¼ CxðtÞ þDIðtÞ

ð54Þ

where

A ¼ diag½k1 � � � kn�; B ¼ ½1 � � � 1�T; C

¼ ½r1k1 � � � rnkn�; D ¼ Zþ
Xn

k¼1

rk

" #
: ð55Þ
4. Results and discussion

To demonstrate the proposed modeling approach, we
employ the impedance model (Section 2.2) with reduced
order frequency and time domain realizations (Section 3)
to a 6 Ah Li-ion HEV cell. Previous work [11] identified
and validated a 313th order CFD model (Section 2.1)
against constant current and transient pulse current exper-
imental data from that cell. The model parameters are
listed in Table 1. The higher order nonlinear CFD model
is employed as a truth model for comparison with low
order SVM time simulation results.

HEV cells are typically pulse charged and discharged
within a narrow SOC range, perhaps 30–70%. Manufac-
turer specified voltage limits are 2.7 and 3.9 V for the pres-
ent cell, however, for short duration pulse events, it is
possible to exceed these voltage limits to as much as 2.5
and 4.3 V without encountering saturation/depletion con-
ditions or initiating damaging side reactions. As a design
goal for the present work, we attempt to create a low order
SVM with 0–10 Hz bandwidth and less than 1% error in
predicted voltage for any arbitrary current profile. Calcu-
lated using the lowest voltage, the worst case voltage error
threshold is ±25 mV.

Following the industry convention, we use ‘‘C-rate’’ ter-
minology to describe current rate capability. From the full
charged (100% SOC) initial condition, a 1 C (6 A) dis-
charge rate, for example, is sustainable for roughly 1 h,
thus delivering the nameplate capacity (6 Ah). In practice,



Table 1
Model parameters for 6 Ah Li-ion HEV cell

Parameter Negative electrode Separator Positive electrode

Design specifications
(geometry and volume fractions)

Thickness, d (cm) 50 · 10�4 25.4 · 10�4 36.4 · 10�4

Particle radius, Rs (cm) 1 · 10�4 1 · 10�4

Active material volume fraction, es 0.580 0.500
Polymer phase volume. fraction, ep 0.048 0.5 0.110
Conductive filler volume. fraction, ef 0.040 0.06
Porosity (electrolyte phase volume fraction), ee 0.332 0.5 0.330

Li+ concentrations Maximum solid phase concentration cs,max (mol cm�3) 16.1 · 10�3 23.9 · 10�3

Stoichiometry at 0% SOC, x0%, y0% 0.126 0.936
Stoichiometry at 100% SOC, x100%, y100% 0.676 0.442
Average electrolyte concentration, ce (mol cm�3) 1.2 · 10�3

Kinetic and transport properties Exchange current density, i0 (A cm�2) 3.6 · 10�3 2.6 · 10�3

Charge-transfer coefficients, aa, ac 0.5, 0.5 0.5, 0.5
SEI layer film resistance, RSEI (X cm2) 0 0
Solid phase Li diffusion coefficient, Ds (cm2 s�1) 2.0 · 10�12 3.7 · 10�12

Solid phase conductivity, r (S cm�1) 1.0 0.1
Bruggeman porosity exponent, p 1.5 1.5 1.5
Electrolyte phase Li+ diffusion coefficient, De (cm2 s�1) 2.6 · 10�6

Electrolyte phase ionic conductivity, j (S cm�1) j = 15.8 ce exp[0.85(1000ce)
1.4]

Electrolyte activity coefficient, f± 1.0
Li+ transference number, t0

þ 0.363

Parameter Value

Equilibrium potential Negative electrode, U� (V) U�(x) = 8.00229 + 5.0647x � 12.578x1/2

� 8.6322 · 10�4x�1 + 2.1765 · 10�5x3/2

� 0.46016exp[15.0(0.06 � x)] � 0.55364
exp[ � 2.4326(x � 0.92)], where x = cs,e�/cs,max�

Positive Electrode, U+ (V) U+ (y) = 85.681y6 � 357.70y5 + 613.89y4 � 555.65y3

+ 281.06y2 � 76.648y � 0.30987exp(5.657y115.0)
+ 13.1983, where y = cs,e+/cs,max+

Plate area-specific parameters Electrode plate area, A (cm2) 10,452
Current collector contact resistance, Rf (X cm2) 20
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capacity differs from these nominal values. Table 1 defines
0 and 100% SOC stoichiometries on a 7.19 Ah basis, the
actual capacity measured at the 1 C rate [11]. Ohmic and
transport limitations reduce available capacity at high
rates. For the present cell, a 50 C (300 A) rate is available
for just 12 s from 100% SOC, having discharged only 1 Ah
capacity before negative electrode solid surface concentra-
tions become depleted.

4.1. Linear models

4.1.1. Submodel identification

Parabolic PDE systems, such as the three coupled diffu-
sion problems considered here, are characterized by an infi-
nite number of negative real eigenvalues, often closely
spaced with similar residues. The slowest non-zero eigen-
value of the solid phase diffusion transfer function equation
(16) occurs at k = Ds(n/Rs) where n is the first non-zero
root of tan(n) = n. This is also the slowest eigenvalue of
transfer functions Eqs. (31)–(34). For the negative elec-
trode, with slightly more sluggish diffusion than the posi-
tive electrode, this is k0 = �4.04 · 10�3 rad/s, or 6.4 ·
10�4 Hz. Within the desired dynamic range k0/2p 6 f 6
fc = 10 Hz, Eq. (16) in the negative electrode has 178
eigenvalues [9], while Eqs. (31)–(34) have thousands of
eigenvalues. The present model order reduction procedure
locates its slowest numerical eigenvalue just to the left of
the slowest actual eigenvalue, with the remaining eigen-
values more or less evenly distributed in logarithmic space
along the real axis to a location near �2pfc.

To illustrate the identification procedure, Fig. 2 com-
pares the �cs;e�ðx; sÞ=IðsÞ frequency response of the exact,
infinite dimensional transcendental transfer function equa-
tion (34) to a 5th order rational polynomial transfer func-
tion approximation equation (51). The approximate
transfer function minimizes the cost functional equation
(52) in the frequency range f = x/2p 2 [0, 10 Hz]. Note that
the phase angle of the 5th order model departs from the
exact value for f > 10 Hz. Not shown, lower order models
yield visibly poorer results, alternately under predicting
and over predicting magnitude and phase angle. Following
the same procedure, we fit low order models to Eqs. (32)
and (34) (once for each electrode) and Eq. (38) at the
50% SOC operating point. Eqs. (33) and (44) are calculated
as static gains of low order models fitted to Eqs. (32) and
(38).

The A, B, C and D matrices of SIMO time domain mod-
els are assembled directly from numerically identified
parameters ZT, kk and rk using Eq. (55). Fig. 3 shows dis-
tributions of jLi, cs,e and ce across the cell at various times



Fig. 2. Negative electrode surface concentration frequency response:
Exact transfer function (	) and 5th order polynomial transfer function (–).
(a) Magnitude, jD�cs;e�ðx; sÞ=IðsÞj. (b) Phase angle, \ðD�cs;e�ðx; sÞ=IðsÞÞ.

Fig. 3. Reaction and concentration distributions during 5 C discharge
from 50% SOC initial condition: CFD model (	) and 5th order negative
electrode/5th order positive electrode/3rd order electrolyte linear sub-
models (–). (a) Reaction current density. (b) Electrode surface concentra-
tion. (c) Electrolyte concentration.
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during a 5 C (30 A) discharge from the 50% SOC initial
condition. Initial spikes in reaction current, jLi, near the
separator decay as Li is de-inserted/inserted from the neg-
ative/positive electrode surface. Equilibrium potentials
rise/fall most rapidly near the separator, penalizing further
reaction, and over time, jLi becomes more uniform. Surface
concentrations, cs,e, fall/rise in a distributed manner consis-
tent with the time history of reaction, jLi. While discharge
continues, cs,e continues to rise/fall, and, unlike Dcs,e, it
never reaches steady state due to the electrode bulk concen-
tration free integrator term Eq. (35). Shown at the bottom
of Fig. 3, electrolyte concentration, ce, does approach a
steady state distribution due to offsetting source/sink
terms, jLi, in the negative/positive electrode regions of
Eq. (4).

4.1.2. Model order selection

Choice of model order is application dependent. Accu-
rate prediction of electrochemical field variable distribu-
tions sometimes requires higher order models than what
is necessary to predict current/voltage behavior at the cell
boundaries Eq. (45). Our primary focus in this paper is
to predict voltage response with <25 mV error.

Transfer functions with similar eigenvalues may be fitted
simultaneously and forced to share eigenvalues, reducing
the number of model states. As a general approach, we cre-
ate three separate reduced order submodels per Eqs. (48)–
(50), and force each to share a common set of eigenvalues.
We refer to them as the negative electrode submodel, posi-
tive electrode submodel, and electrolyte submodel. The
open circuit voltage submodel, Eq. (47), containing a single
eigenvalue at the origin, plays no role in model order
reduction.

Table 2 displays error metrics of the three submodels for
different choices of model order. Tabulated error values are
normalized by each transfer function’s steady state imped-
ance at the current collector, x = 0 or L, listed in parenthe-
sis in the left most column. L2 and L1 norms equation (53)
provide information on the quality of fit for 1D field vari-
able distributions, while values listed at x = 0 or L quantify
submodel error contributions to cell voltage response. At
50% SOC, positive electrode surface concentration repre-
sents the dominant impedance due to the strong equilib-
rium potential coupling, oU+/ocs+. Overpotential
impedance is almost negligible.

For the present model to achieve <25 mV cell voltage
error at the 50 C current rate requires total impedance
error <8.3 · 10�5 X. Current collector errors listed in Table
2 are not strictly additive, however, as individual transfer
function errors occur at different frequencies and some-
times cancel one another. For small perturbations about
the 50% SOC linearization point, 3rd order electrode mod-
els are often sufficient. Sustained high rate currents are
more difficult to model accurately, and in particular, to
capture electrode surface saturation/depletion nonlineari-
ties (Section 4.2) at the end of 50 C discharge, we must
use 5th order models for each electrode. Much of the
/Dce

e impedance is static, and we find a 1st order model of
electrolyte dynamics sufficient for the present cell. Except
where noted, the 5th order negative electrode, 5th order
positive electrode, 1st order electrolyte model, denoted as
5Ds�/5Ds+/1De, is used for all simulations. The eigenvalues
are:



Table 2
Impedance error magnitude for negative electrode, positive electrode, and
electrolyte submodels of various orders across frequency range
0 6 f 6 10 Hz

Transfer function (steady state
impedance)

Error Negative electrode
submodel order

3 4 5

jðoU�
ocs�
ÞDcs;e�ðx; jxÞ=IðjxÞj (3.65 · 10�4

X @ x = 0, x = 0)
x = 0 0.1215 0.0689 0.0387
L1 0.1440 0.0711 0.0453
L2 0.0672 0.0319 0.0175

|g�(x, jx)/I(jx)| (7.85 · 10�6 X @
x = 0, x = 0)

x = 0 0.0674 0.0283 0.0159
L1 0.2636 0.1030 0.0391
L2 0.0558 0.0227 0.0103

jD/jLi
�

e ðx; jxÞ=IðjxÞj (2.44 · 10�4 X @
x = L, x = 0)

x = L 0.0473 0.0236 0.0111
L1 0.0566 0.0281 0.0132
L2 0.0304 0.0129 0.0063

Positive electrode
submodel order

3 4 5

jðoUþ
ocsþ
ÞDcs;eþðx; jxÞ=IðjxÞj (2.50 · 10

�3

X @ x = 0, x = 0)

x = L 0.1203 0.0353 0.0089
L1 0.1213 0.0354 0.0095
L2 0.0526 0.0165 0.0053

|g+(x, jx)/I(jx)| (1.45 · 10�5 X @
x = 0, x = 0)

x = L 0.0668 0.0424 0.0219
L1 0.2597 0.1165 0.0724
L2 0.0378 0.0217 0.0108

jD/
jLi
þ

e ðx; jxÞ=IðjxÞj (2.42 · 10�4 X @
x = L, x = 0)

x = L 0.0227 0.0141 0.0077
L1 0.0227 0.0141 0.0077
L2 0.0049 0.0029 0.0014

Electrolyte submodel
order

1 2 3

jD/Dce
e ðx; jxÞ=IðjxÞj (2.13 · 10�4 X @

x = L, x = 0)
x = L 0.0555 0.0447 0.0365
L1 0.1123 0.0944 0.0407
L2 0.0318 0.0255 0.0155

Local error quantified at the current collector appropriate for the given
submodel, either x = 0 or x = L. Distributed error quantified with L1 and
L2 error norms, Eq. (53). All errors normalized by steady state impedance
at the current collector.

Table 3
Impedance error magnitude for combined negative electrode/positive
electrode submodels (with common eigenvalues) of various orders across
frequency range 0 6 f 6 10 Hz

Transfer function (steady state
impedance)

Error Negative/positive
electrode submodel
order

3 4 5

jðoU�
ocs�
ÞDcs;e�ðx; jxÞ=IðjxÞj (3.65 · 10�4

X @ x = 0, x = 0)
x = 0 0.2330 0.1410 0.1089
L1 0.2425 0.1529 0.1199
L2 0.1005 0.0581 0.0453

|g�(x, jx)/I(jx)| (7.85 · 10�6 X @
x = 0, x = 0)

x = 0 0.0559 0.0273 0.0161
L1 0.2485 0.1043 0.0421
L2 0.0495 0.0227 0.0111

jD/jLi
�

e ðx; jxÞ=IðjxÞj (2.44 · 10�4 X @
x = L, x = 0)

x = L 0.0389 0.0229 0.0112
L1 0.0478 0.0276 0.0132
L2 0.0261 0.0128 0.0067

jðoUþ
ocsþ
ÞDcs;eþðx; jxÞ=IðjxÞj (2.50 · 10�3

X @ x = 0, x = 0)
x = L 0.1086 0.0787 0.0534
L1 0.1086 0.0803 0.0534
L2 0.0481 0.0327 0.0219

|g+(x, jx)/I(jx)| (1.45 · 10�5 X @
x = 0, x = 0)

x = L 0.0744 0.0417 0.0198
L1 0.2078 0.1139 0.0675
L2 0.0411 0.0212 0.0099

jD/
jLi
þ

e ðx; jxÞ=IðjxÞj (2.42 · 10�4 X @
x = L, x = 0)

x = L 0.0252 0.0137 0.0070
L1 0.0252 0.0137 0.0070
L2 0.0054 0.0028 0.0013

Local error quantified at the current collector appropriate for the given
submodel, either x = 0 or x = L. Distributed error quantified with L1 and
L2 error norms, Eq. (53). All errors normalized by steady state impedance
at the current collector.

K.A. Smith et al. / Energy Conversion and Management 48 (2007) 2565–2578 2573
k� ¼ �½0:0050; 0:0605; 0:06576; 6:3763; 62:43� rad=s

kþ ¼ �½0:0085; 0:0608; 0:05691; 5:8226; 63:69� rad=s

ke ¼ �0:098 rad=s

Including open circuit potential submodel equation (47)
with kOC = 0, the complete cell model is 12th order.

Before proceeding, we note that lower order SVMs may
be obtained by forcing submodels to share eigenvalues. By
simultaneously fitting negative and positive electrode trans-
fer functions, we may replace eigenvalues k� and k+ with a
single set of eigenvalues, k±. This order reduction is
achieved at the expense of increased impedance error quan-
tified in Table 3.

4.1.3. Current/voltage model

The current/voltage model is a state variable realization
of Eq. (46) with reduced order submodels identified as
described in Sections 4.1.1 and 4.1.2. Unlike the transfer
function equation (46), the SVM may take on non-zero ini-
tial conditions for cs,avg� and cs,avg+. Following typical
convention, we define SOC as the fraction of capacity, Q,
stored in the cell. Given an initial SOC at t = 0 and assum-
ing 100% coulombic efficiency, SOC may be calculated in
time as

SOCðtÞ ¼ � 1

Q

Z t

0

IðtÞdt: ð56Þ

We express cs,avg� = f(SOC) and cs,avg+ = f(SOC) by defin-
ing a reference stoichiometry, h = cs,avg/cs,max, for each
electrode at the 100% SOC condition, h100%, listed in Table
1. The 0% SOC reference stoichiometry, h0%, is calculated
by subtracting Q = 7.19 Ah from h100% with appropriate
units conversion,

h0% ¼ h100% � Q
1

AF
1

des

1

cs;max

� �
: ð57Þ

With reference stoichiometries, we may express each elec-
trode’s bulk concentration as a linear function of SOC,

cs;avgðtÞ ¼ SOCðtÞðh100% � h0%Þ þ h0%½ �cs;max; ð58Þ

valid at any point in time.
Linearized about 50% SOC, the linear current/voltage

SVM is
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d

dt

SOC

x�

xþ

xe

26664
37775 ¼

0

A�

Aþ

Ae

26664
37775

SOC

x�

xþ

xe

26664
37775þ

� 1
Q

1

..

.

1

266664
377775IðtÞ

V ðtÞ ¼ oV OC

oSOC
C� Cþ C

e

h i SOC

x�

xþ

xe

26664
37775

þ D� þDþ þDe �
Rf

A

� �
IðtÞ þ V static

ð59Þ
where

C� ¼ CDcs;e� þ Cg� þ CD/
jLi�
e D� ¼ DDcs;e� þDg� þDD/

jLi�
e

Cþ ¼ CDcs;eþ þ Cgþ þ CD/
jLi
þ

e Dþ ¼ DDcs;eþ þDgþ þDD/
jLi
þ

e

Ce ¼ CD/Dce
e De ¼ DD/Dce

e ð60Þ
oV OC

oSOC
¼ Q

AF
oUþ
ocsþ

����
50%

1

dþesþ
� oU�

ocs�

����
50%

1

d�es�

� �
ð61Þ

V staticj50% ¼ Uþj50% � U�j50% � 0:5
oV OC

oSOC

����
50%

: ð62Þ

Fig. 4 compares the voltage response of the 5Ds�/5Ds+/
1De linear SVM to the nonlinear CFD model for a stepped
current profile at the 50% SOC initial condition. The cur-
rent profile, serving as input to both models, consists of
Fig. 4. Linear SVM voltage response and error for pulse current profile at
50% SOC. (a) Current profile. (b) Voltage response of CFD model (	) and
linear SVM (–). (c) Voltage response error of linear SVM (–) with 25 mV
error threshold (� � �). (d) Individual submodel contributions to voltage
error: ĝ�ð0; tÞ ð–––Þ; ĝþðL; tÞ ð---Þ; bU �ð0; tÞ ð�Þ; bUþðL; tÞ ðOÞ;D/̂eðL; tÞ ðdÞ,
with 25 mV error threshold (� � �).
10 C, 20 C, 30 C and 40 C discharge/charge/rest cycles.
Each discharge/charge cycle returns the cell to 50% SOC.
Voltage prediction for the linear SVM is reasonably good,
although we see from Fig. 4d that individual submodel
errors cancel one another throughout much of the profile.
Submodel errors worsen with increasing current rate as
electrode surface concentrations are perturbed far from
the 50% SOC linearization point.

4.1.4. Observability and controllability properties

Using standard techniques [22], we assemble observ-
ability

#0 ¼ CT ðCAÞT ðCA2ÞT � � � ðCAn�1ÞT

 �T ð63Þ

and controllability

#c ¼ A AB A2B � � � An�1B

 �

: ð64Þ

matrices. Both have full rank, indicating that the model is
fully observable and controllable.

Some model states may be less observable/controllable
than others, which we quantify using the observability/con-
trollability gramian of a balanced realization model. We
define an observability gramian, Wo, as the solution to

ATWo þWoAþ CTC ¼ 0 ð65Þ
and the controllability gramian, Wc, as the solution to

AWc þWcA
T þ BBT ¼ 0: ð66Þ

Applying transformation �x ¼ Tx, an alternative realization
of the SVM is

_�x ¼ TAT�1�xþ TBI

y ¼ CT�1�xþDI
ð67Þ

with observability and controllability gramians,
Wo ¼ T�T WoT�1 and Wc ¼ TWcT

T, respectively. The bal-
anced realization of Eq. (67) results when transform matrix
T is such that Wo ¼Wc ¼ diagðgÞ.

Table 4 presents the observability/controllability gra-
mian of the balanced realization 5Ds�/5Ds+/1De linear
SVM. Fast electrode states are most observable/controlla-
ble. This is intuitive, as the rapid perturbations in electrode
Table 4
Observability/controllability gramian of balanced realization 5Ds�/5Ds+/
1De SVM linearized at 50% SOC

Eigenvalue, kk (rad/s) Gramian, gk ((X s)1/2)

Negative electrode
submodel

�5.56 · 10�3 4.33 · 10�8

�6.05 · 10�2 4.39 · 10�12

�6.58 · 10�1 6.31 · 10�6

�6.38 4.34 · 10�5

�62.4 1.146 · 10�4

Positive electrode
submodel

�8.53 · 10�3 2.07 · 10�6

�6.08 · 10�2 2.16 · 10�10

�5.69 · 10�1 2.98 · 10�6

�5.82 1.400 · 10�5

�63.7 7.42 · 10�4

Electrolyte submodel �9.49 · 10�1 7.54 · 10�9



Fig. 5. Voltage response of various SVMs versus CFD model during
constant current discharge from 100% SOC initial condition: CFD model
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surface concentration (of which voltage response is a strong
function) are predominantly influenced by recent current
history. In contrast, electrode bulk concentrations (i.e.
SOC) rise and fall slowly and are weakly coupled to voltage
response. For estimation/control schemes in fast dynamic
applications, it may be possible to reduce order by dropping
slow electrode states with weak observability/controllabil-
ity. The electrolyte submodel state is also weakly observa-
ble/controllable, indicating that it will probably be
difficult to ascertain electrolyte concentration gradients
using a linear observer. Nonetheless, the results are encour-
aging. To date, the battery estimation literature has pre-
dominantly focused on SOC estimation. In high power,
pulse type applications, however, it is attractive to estimate
electrode surface concentrations, as their saturation/deple-
tion are responsible for sudden loss of power and side
reactions. Table 4 indicates that electrode surface concen-
trations are more controllable/observable than SOC.
(	), linear SVM (� � �), nonlinear OCP SVM (–), and nonlinear OCP/cs,e

SVM (•).

4.2. Nonlinear models

Concentration dependent properties represent the dom-
inant nonlinearities in Eqs. (1)–(15). Those appearing
explicitly in the output equation of Eq. (59) are readily
included in the SVM. Other nonlinearities exhibit complex
spatial dependency that we approximate on an electrode
averaged, or lumped basis.

4.2.1. Open circuit potential

The open circuit potential (OCP) nonlinearity is incor-
porated by introducing equilibrium potential relationships,
U+(cs,e(L, t)) and U�(cs,e(0, t)) listed in Table 1, into the
model output equation. The nonlinear SVM takes the form

_x ¼ Axþ BI

V ¼ hðx; IÞ
ð68Þ

Unlike the linear SVM, the nonlinear OCP SVM correctly
predicts battery rest voltage, or open circuit voltage (OCV)
at all values of SOC. Dynamic response is still lacking,
however.

Fig. 5 shows the voltage response for constant current
(1–50 C) discharge simulations initiated from 0% depth of
discharge (DOD), i.e. 100% SOC, as predicted by the
CFD model, linear SVM Eq. (59) and nonlinear OCP
SVM. At low current rates, the linear SVM gives reason-
able approximation only in the middle of the discharge as
surface concentrations cs,e(0, t) and cs,e(L, t) pass through
their 50% SOC linearization point. The nonlinear OCP
SVM greatly improves voltage prediction over the linear
model at the beginning of discharge, near 100% SOC.
The end of discharge voltage prediction is poor, however,
for all but the lowest rate, the 1 C case.
4.2.2. Electrode surface concentration

End of discharge voltage may be substantially improved
by switching between local linear models identified at var-
ious electrode surface concentration set points. Voltage
response predicted by the nonlinear OCP/cs,e SVM, shown
in Fig. 5 with the ‘‘Æ’’ symbol, lays almost directly on top of
the CFD model results. Unlike Sec. 4.2.1, the nonlinear
OCP/cs,e SVM approximates cs,e(0, t) and cs,e(L, t) with
nonlinear, rather than linear models.

Shown in Fig. 6, local electrode submodels are identified
at roughly 20% increments in surface stoichiometry, with
finer discretization in less linear regions of U+(cs,e(L, t))
and U�(cs,e(0, t)). There is negligible advantage in allowing
each localized electrode submodel its own independent
eigenvalues. We obtain good impedance fits at all set points
utilizing the eigenvalues identified at 50% SOC. A and B

matrices of Eq. (59), thus, remain constant. The C and D

matrices vary by interpolating between locally identified
electrode submodels as a function of solid phase surface
concentration averaged across each electrode,

C� ¼ C�ðcs;e avg�Þ D� ¼ D�ðcs;e avg�Þ
Cþ ¼ Cþðcs;e avgþÞ Dþ ¼ Dþðcs;e avgþÞ

ð69Þ

The nonlinear OCP/cs,e SVM keeps the form of Eq. (68).
Fig. 7 elucidates the substantial improvement in end of

discharge voltage prediction at the 50 C rate (Fig. 5)
achieved by approximating cs,e nonlinearities. Comparing
surface concentrations predicted by the CFD model, linear
model and nonlinear cs,e model, there is little difference
between the three in the positive electrode. In the negative
electrode however, the relatively flat U� relationship at
moderate to high surface stoichiometries causes reaction
to be heavily favored near the separator at short times.
At t = 6 s, the CFD model shows surface concentrations
drastically different from that of the linear model. Around
this time, local values of cs,e� fall below �0.2cs,max, causing
U� to rise sharply (Fig. 6). At t = 13 s, surface concentra-
tions are near uniformly depleted across the negative elec-
trode, a condition accurately captured by the nonlinear cs,e



Fig. 6. Equilibrium (or open circuit) potential versus electrode surface
concentration: Empirical relationships, U, from Table 1 (–), linearization
set points used for nonlinear cs,e SVM submodel identification (d), 100%
SOC reference (h) and 0% SOC reference (x).

Fig. 7. Distribution of electrode surface concentration at various times
during 50 C discharge from 100% SOC initial condition (voltage response
shown in Fig. 5): CFD model (	), linear SVM (–), and nonlinear cs,e SVM
(–).

Fig. 8. Nonlinear OCP/cs,e SVM error during 50 C discharge from 100%
SOC initial condition (voltage response shown in Fig. 5): (a) voltage
response error (–) with 25 mV error threshold (� � �). (b) Individual
submodel contributions to voltage error: ĝ�ð0; tÞ ð–––Þ; ĝþðL; tÞ ð- - -Þ;bU�ð0; tÞ ð�Þ; bUþðL; tÞ ðOÞ;D/̂eðL; tÞ ðdÞ, with 25 mV error threshold (� � �).

Fig. 9. Nonlinear OCP/cs,e SVM error during pulse current profile at 50%
SOC (current profile and CFD model voltage response shown in Figs. 4a
and b): (a) voltage response error (–) with 25 mV error threshold (� � �). (b)
Individual submodel contributions to voltage error: ĝ�ð0; tÞ ð–––Þ;
ĝþðL; tÞ ð- - -Þ; bU�ð0; tÞ ð�Þ; bUþðL; tÞ ðOÞ;D/̂eðL; tÞ ðdÞ, with 25 mV error
threshold (� � �).
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model. The linear model, predicting local concentrations
less than zero, is physically unrealistic.

Fig. 8 displays cell voltage error and submodel voltage
error for the nonlinear OCP/cs,e SVM during the same
50 C discharge from 100% SOC. Equilibrium potentials
at the current collectors, U+(cs,e(L, t)) and U�(cs,e(0, t)),
are predicted to within 25 mV. Electrolyte phase potential
error continually grows throughout the discharge, how-
ever, as a large electrolyte concentration gradient builds
across the cell. Non-uniform ce(x, t) increases the signifi-
cance of the electrolyte conductivity concentration depen-
dence, jeff(ce).

Fig. 9 displays voltage errors for the nonlinear OCP/cs,e

SVM in simulating the 50% SOC pulse current profile from
Fig. 4. Here, the cell is alternately discharged and charged
by short pulses, no substantial electrolyte concentration
gradient is established and electrolyte phase potential error
is negligible. Rapid reversals in current cause brief spikes in
cell voltage error >25 mV at 40, 65 and 80 s, which quickly
dissipate. Individual submodel errors are now all <25 mV,
a large improvement over the linear SVM results shown in
Fig. 4.

4.2.3. Electrolyte concentration

The impedance model assumption of jLi(x, t) decoupled
from ce(x, t) loses validity as ce! 0, a condition that we
explore here. With jLi(x, t) and ce(x, t) provided by our



Fig. 11. Distribution of electrolyte surface concentration at various times
during 30 C discharge from 100% SOC initial condition with sluggish
electrolyte diffusion, De = 2.6 · 10�7 cm2/s (voltage response shown in
Fig. 10): CFD model (	) and 3rd order linear De submodel (–).
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linear model, it is possible to solve explicitly for /e(L, t) by
twice integrating Eq. (9),

D/eðL; tÞ ¼
2RT ðt0

þ � 1Þ
F

ln
ceð0; tÞ
ceðL; tÞ

� �
�
Z L

0

1

jeffðceðx; tÞÞ

Z
jLiðx; tÞdxdx; ð70Þ

valid for constant t0
þ and f±. (See Ref. [23] for discussion of

non-constant t0
þ and f±.) For brevity, we refer to term 1 on

the right hand side of Eq. (70) as the ln(ce) nonlinearity and
term 2 as the jeff(ce) nonlinearity. Each is a modification of
the output equation of Eq. (59) with nonlinear SVM reali-
zation equation (68).

The present cell model with parameters listed in Table 1
does not experience electrolyte depletion at any current
rate, however, other cells with less porous electrodes and
separator may experience this limitation. To examine volt-
age response with end of discharge induced by electrolyte
depletion, we reduce the electrolyte diffusion coefficient
by one order of magnitude to De = 2.6 · 10�7 cm2/s.

Fig. 10 presents the voltage response of this electrolyte
transport limited cell for 10–50 C constant current dis-
charge cases initiated from 100% SOC. Rate capability is
substantially reduced compared to the nominal De model
(Fig. 5). Fig. 10 shows the nonlinear OCP/cs,e SVM (Sec-
tion 4.2.2) over predicts voltage and fails to capture end
of discharge caused by electrolyte depletion. Introduction
of the jeff(ce) nonlinearity, slightly improves voltage predic-
tion at intermediate times, however, the end of discharge
prediction remains poor. Voltage prediction degrades when
the ln(ce) nonlinearity is included, as it is very sensitive to
small errors in absolute (not relative) values of ce(0, t)
and ce(L, t).
Fig. 10. Voltage response of various 5Ds�/5Ds+/3De SVMs versus CFD
model during constant current discharge from 100% SOC initial condition
with sluggish electrolyte diffusion, De = 2.6 · 10�7 cm2/s: CFD model (	),
nonlinear OCP/cs,e SVM (•), nonlinear OCP/cs,e/j

eff(ce) SVM (–), and
nonlinear OCP/cs,e/j

eff(ce)/ln(ce) SVM (––).
To elucidate these errors, Fig. 11 shows electrolyte con-
centration distributions at various times during the 30 C
discharge case. During discharge of a cell with sluggish elec-
trolyte transport, electrolyte depletion occurs first at x = L

and then spreads back across the positive electrode. Early in
the discharge, the linear model predicts ce(x, t) to good
accuracy, however around t = 15 s (corresponding to
�10% DOD in Fig. 10), the linear model begins to substan-
tially under predict ce(L, t). By t = 18.7 s, the linear model
predicts negative values of ce, which are physically impossi-
ble. Extending the SVM to cover electrolyte depletion may
require online PDE solution, as nonlinearities governing the
jLi distribution are highly spatially dependent and do not
appear conducive to a lumped parameter approach.
However, provided local values of ce remain above 0.15
ce,0, the present impedance model assumptions are
valid and the nonlinear OCP/cs,e/j

eff(ce) SVM predicts volt-
age response to within 25 mV regardless of sluggish or
facile De.

5. Conclusions

This paper numerically derives a fully observable/con-
trollable state variable model from an impedance represen-
tation of electrochemical kinetic, species and charge
conservation equations governing discharge/charge behav-
ior of a Li-ion cell. Validated against a 313th order nonlin-
ear CFD model of a 6 Ah HEV cell, a 12th order state
variable model, with 0–10 Hz bandwidth, predicts terminal
voltage to within 1% for pulse and constant current profiles
at rates up to 50 C. Model properties indicate that elec-
trode surface concentrations (with fast dynamics related
to sudden loss of power and side reactions) are more obser-
vable/controllable than electrode bulk concentrations
(SOC).



2578 K.A. Smith et al. / Energy Conversion and Management 48 (2007) 2565–2578
The state equation has a modal form with negative real
eigenvalues distributed in frequency between the slowest
system eigenvalue (negative electrode solid state diffusion)
and 10 Hz. A single eigenvalue at the origin represents
SOC dynamics. The model order reduction procedure is
somewhat insensitive to numerical eigenvalue location
(given the thousands of actual system eigenvalues), and we
can approximate the range of admissible electrode surface
concentrations using local linear models sharing a single
set of eigenvalues. Open circuit potential, electrode surface
concentration/reaction distribution coupling and electro-
lyte concentration/ionic conductivity nonlinearities are
explicitly approximated in the model output equation on a
local, electrode averaged and distributed basis, respectively.

The work highlights challenges associated with control
oriented modeling of infinite dimensional nonlinear distrib-
uted parameters systems. We quantify error attributable to
rational approximation of infinite dimensional processes in
the frequency domain using impedance error norms. Errors
attributable to model assumptions and lumped approxima-
tion of spatially varying nonlinearities are quantified in the
time domain using the CFD model. By inducing sluggish
electrolyte transport, we show the present model loses
validity near electrolyte depletion (ce < 0.15 ce,0) where
the system exhibits strong spatially varying nonlinearities.
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