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Abstract

The direct numerical simulation (DNS) method, developed for modeling the cathode catalyst layer (CL) of a polymer electrolyte fuel cell (PEFC)
in Part I, is further extended wherein the catalyst layer is described as a random three-dimensional porous structure. A random CL microstructure is
obtained using a computer-generated random number with specified porosity and pore size as the input structural parameters. Some statistical features
of the CL and their dependence on the porosity are identified and demonstrated. The charge and species conservation equations are solved directly
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n this microscopically complex structure. The results from the DNS calculation are compared with the one-dimensional macrohomogeneous
redictions and the Bruggeman factor for transport property correction is evaluated, which can be used as direct input into the macroscopic fuel
ell models.
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. Introduction

In our companion paper [1], a regular microstructure was
onstructed to represent the simplified three-dimensional cath-
de catalyst layer for application of the DNS model. The regular
-D structure, although offering an improvement over the two-
imensional geometry, suffers from many morphological and
ssociated physical limitations. Besides the simplicity of the
tructure, statistical information still deviates from a realistic
orous catalyst layer. For instance, the phase interfacial area
eeds to be further enhanced; the constituent phases are not as
ortuous as that in a practical porous medium. In this work, a ran-
om porous microstructure is constructed and the DNS model is
mplemented systematically. The structural and transport char-
cteristics are investigated subsequently.

The general objective of constructing a random microstruc-
ure is to mimic more closely the statistical nature of a real porous

edium or the random arrangement of pores and solids at the

∗ Corresponding author. Tel.: +1 814 863 4762; fax: +1 814 863 4848.
E-mail address: cxw31@psu.edu (C.-Y. Wang).

microscopic scale. This method enables us to create “digital”
microstructures with desired properties. As a general proce-
dure, certain low-order statistical properties (e.g., porosity and
two-point correlation function) of the real porous medium are
measured experimentally first and a synthetic medium is recon-
structed having the same average parameters. The numerical
reconstruction of a two-dimensional random porous medium
with specified porosity and autocorrelation function was orig-
inally developed by Joshi [2] and further extended to three-
dimension by Quiblier [3]. This statistics-based microstructure
generation method was slightly modified by Ioannidis et al.
[4] by using Discrete Fourier Transform, originally devised by
Gutjahr [5]. Adler et al. [6] applied the stochastic reconstruc-
tion method to generate Fontainbleau sandstone microstructure.
Briefly, the stochastic simulation technique is based on the trun-
cation of Gaussian random fields and is capable of generating
synthetic pore spaces with specified porosity and correlation
function.

In this work, a 3-D purely random porous structure with a
given porosity and pore size is reconstructed and subsequently
used for the DNS model. The numerical reconstruction proce-
1 Present address: Plugpower Inc., 968 Albany-Shaker Road, Latham, NY
2110, USA.

dure of the catalyst layer microstructure is described first. Some
statistical features of the microstructure and their dependence on

013-4686/$ – see front matter © 2005 Elsevier Ltd. All rights reserved.
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the given porosity are subsequently identified and demonstrated.
A modified DNS model is further presented for this microscopi-
cally complex structure, based on the 3-D DNS model described
in the companion paper [1]. Finally, after solving the charge and
oxygen conservation equations directly on the simulated random
catalyst layer, the DNS results are compared with the predictions
from a one-dimensional macrohomogeneous model, from which
the Bruggeman factor for transport property correction is eval-
uated and limitations of the macrohomogeneous model are also
discussed.

2. Random structure

2.1. General concept

Except for a few man-made microstructures, most of the real
porous media are random. However, the qualifier “random” is
quite obscure and can be applied to delineate very different situ-
ations, such as pure disorder and correlated disorder in a porous
medium and hence needs further clarification.

Ideally, each point r within the 3-D space of an arbitrarily
complex porous structure can be designated as either belonging
to the void phase (r ∈ Vr) or to the solid phase (r ∈ Sr). The pore
structure can then be completely defined in terms of a binary
phase function Z(r), which takes discrete values in the 3-D space
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2.2. Numerical reconstruction

Numerical reconstruction is a unique approach that enables
the prediction of macroscopic properties from the microscopic
structure and the underlying pore-scale physics of a real, thus
random porous medium [7]. In principle, this method consists
of three major steps. The first step is the experimental measure-
ment of some statistical features describing the microstructure.
Often, the first two popular low-order moments (i.e. porosity and
autocorrelation function) are measured. The second step is the
numerical reconstruction of random porous medium in such a
way that on average the generated microstructure possesses the
same statistical features as the real porous medium. Once the
microstructure is generated, all the transport processes can be
studied in principle. In the case of the DNS model, by defining
a phase function [1], a single set of transport equations valid for
the entire microstructure can be solved.

In the current work, a purely random porous medium is
computer-generated by employing a random number genera-
tor instead of following the first two steps described above. The
porosity, ε and pore size, d are chosen as the target geometry
features for the microstructure to match. Specifically, the porous
catalyst layer is constructed in a discrete manner. It is consid-
ered to be composed of Nx × Ny × Nz cubes, each of the same
size d, which represents the chosen pore scale. These elemen-
tary cubes are filled with either the electrolyte phase or the pore
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ccording to the following definition [7]:

(r) =
{

1 if r ∈ Vr

0 if r ∈ Sr

(1)

The first two moments of the phase function are the porosity,
, and the autocorrelation function, RZ(u), defined respectively
s [7]:

= 〈Z(r)〉 (2)

Z(u) = 〈[Z(r) − ε][Z(r + u) − ε〉
ε − ε2 (3)

here angular brackets denote statistical averages and u is a lag
ector. For a statistically homogeneous porous medium, ε is a
onstant and RZ(u) is only a function of the separation/lag vector,
, and does not depend on the spatial coordinates (i.e. indepen-
ent of r). Physically, the two-point autocorrelation function
efers to the probability that two points at a distance, r, are both
n the pore space. In addition, if the medium is isotropic, then
he autocorrelation function does not depend on the direction
ut only on the modulus, u, of the vector u. Furthermore, for
purely disordered porous medium, the autocorrelation func-

ion is independent of u and identically goes to zero. In such a
orous structure, each elementary cube (voxel) resulting from
he discretization of the 3-D continuum space is occupied at ran-
om either with the solid phase or the void phase with a given
robability, ε and can be realized, in principle, by throwing a
ice. This simplest construction rule is employed here to gener-
te the catalyst layer microstructure for the DNS model, which
s elaborated in the following section.
hase. Similar to the approach in our previous work [1], a mixed
lectrolyte/electronic phase is considered which is justified later
nd henceforth referred to as the electrolyte phase in the rest
f the paper. During reconstruction, the computer generates a
andom number uniformly distributed within the interval [0, 1]
or each cube. When the random number is lower than the given
orosity, ε, the corresponding cube is set to be occupied by the
ore phase. Otherwise, it is occupied by the electrolyte phase.

.3. Structural analysis and identification

Once the microstructure is constructed, structural connectiv-
ty needs to be imposed by forming pore clusters consisting of
group of connected pores. When the porosity, ε, is small, the
ores form small and isolated clusters. When ε is large enough,
mong the pore clusters, there would be one that penetrates the
ntire medium from one end to the other. This kind of pore cluster
s termed as “transport” pore cluster, since it forms a continuous
etwork allowing the fluid to transport across the entire medium.
n other words, the porous medium is permeable only if such a
transport” pore cluster exists. A pore belonging to the “trans-
ort” pore cluster is called a “transport” pore; otherwise it is
alled a “dead” pore. Apparently, as ε increases, there would be
ewer and fewer “dead” pores and as ε is close to one, all the
ores would be “transport” pores.

The constructed random cathode catalyst layer structure for
he present work is shown in Fig. 1. The elementary cube size is
.25 �m, representing the chosen pore size. Therefore, to sim-
late the 10 �m thick catalyst layer, 40 cubes are applied in
he thickness direction. Similar to the approach in the compan-
on paper [1], one cube layer of only electrolyte and one layer
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Fig. 1. Schematic diagram of the 3-D random catalyst layer microstructure with nominal porosity of 0.36.

of only pore are added to the left and right boundaries of the
computational domain, respectively, for ease of implementation
of the boundary condition. To investigate transport properties
of the constructed random microstructure, the “transport” and
“dead” portions of each phase have been numerically identified,
as shown in Fig. 1 and the process of designation is detailed
below.

The numerical approach of identifying the “transport” and
“dead” portions for each phase starts with assigning an initial
value of a phase function, f, to each elementary control volume
in the entire computational domain. On the left boundary of
electrolyte-only cells, f is set to be one; while f is assigned to be
zero within the pore-only cells on the right boundary. Elsewhere
within the domain, f is assigned three inside the electrolyte cells
and two inside the pore cells. Then starting from the left bound-
ary, each constituent elementary control volume is scanned to
identify the “transport” electrolyte. For the cell with f equal to
three, if any of its six neighboring cells has f equal to one, the
phase function, f of the cell itself is switched to one. After each
scan of the entire domain, the total number of cells with f equal
to three is counted. The scan from left to right is repeated until
the total number of cells having phase function value of three
does not change anymore. Thus the cells with f equal to one are
identified as “transport” electrolyte; while those with f equal to
three represent “dead” electrolyte. Similarly, for the pore phase,
the scanning process is continued from right boundary to the left
a
f
i
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a
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accessible for oxygen from the gas diffusion layer (GDL) at
the right boundary and the protons from the polymer electrolyte
membrane at the left boundary, respectively. In Fig. 1, the iden-
tified “transport” pore and “transport” electrolyte, as well as
“dead” pore and “dead” electrolyte are indicated with differ-
ent gray cubes, corresponding to a natural porosity of 0.36. As
expected, there are few “dead” electrolyte cells since the elec-
trolyte volume fraction is relatively large (0.64). On the other
hand, only about 70% of total pores are identified as “transport”
pores, indicating the effective “transport” porosity is only about
0.26.

The constructed random microstructure, shown in Fig. 1,
includes 20 elementary cubes in y and z directions each, while
the simulated catalyst layer is considered isotropic and periodic
in y and z directions. Fig. 2 shows the dependence of the effective
porosity on the number of cells included in the y and z direc-
tions. It shows that when the total number of cells in the y and z
directions is doubled from 20 to 40, the “transport” pore volume
fraction varies only slightly if the natural porosity is greater than
0.3. Since the range of porosity smaller than 0.3 is not realistic
for practical applications of the catalyst layer, the number of
cells of 20 is chosen to be sufficient in the y and z directions and
employed for all the subsequent DNS calculations.

Fig. 3 shows the effective porosity and phase interfacial area
ratio as a function of the natural porosity. The phase interfacial
area ratio is defined as the ratio of the interfacial area in a porous
s
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nd once a cell with f equal to two has any neighboring cell with
equal to zero, the value of the phase function, f of the cell itself
s switched to zero. Finally, after sufficient number of scans, the
ells with f equal to zero and two are identified as “transport”
nd “dead” pores, respectively.

The “transport” pore and the “transport” electrolyte identi-
ed here represent those elementary control volumes which are
tructure to the cross-sectional geometrical area. Here the total
nterfacial area ratio represents all interfaces between the elec-
rolyte and pore phases, while the active interfacial area ratio
nly includes those between “transport” electrolyte and “trans-
ort” pores, indicating that the interfacial sites are accessible by
rotons, electrons and oxygen and hence undergo the electro-
hemical reaction. The figure only shows the natural porosity
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Fig. 2. Effect of cross-sectional mesh resolution on the transport pore volume
fraction.

range up to 0.6 because the effective porosity is nearly identi-
cal to the natural porosity when it is larger than 0.6. Note that
the interfacial area curve is symmetric around the porosity of
0.5. It is also seen that when the porosity is smaller than 0.35,
both effective porosity and active interfacial area are reduced
dramatically. This is of significance in practical applications,
indicating that 0.35 is the lower bound of the porosity for the
catalyst layer. Furthermore, the random microstructure provides
a realistic active interfacial area ratio of between 40 and 50,
which has been significantly improved compared to that with the
3-D regular microstructure simulation in the companion paper
[1]. This value of the reaction area ratio corresponds roughly to
0.15 mg Pt/cm2 catalyst loading with a dispersion surface area
of Pt particles at 35 m2/g Pt, which is representative in current
applications.

F
r

Fig. 4. Profiles of pore and electrolyte volume fractions along the thickness of
the catalyst layer.

The local pore and electrolyte distributions across the thick-
ness of the catalyst layer are shown in Fig. 4. First, the local
cross-sectional averaged natural porosity shows a random fluc-
tuation around the average porosity of the entire porous structure
marked by the horizontal line. Secondly, most of the electrolyte
cells are available for transport, while a considerable portion of
pores are dead pockets. The percentage of “transport” pores dis-
tributes uniformly in most locations except for the front and back
end of the structure. At the backside (i.e. near the left boundary)
of the catalyst layer interfacing with the membrane, more pores
are “dead” indicating difficulty of oxygen access. On the other
hand, at the frontside (i.e. near the right boundary) interfacing
with the GDL, there are mostly “transport” pores partly because
the structure is open to large pore space in the GDL.

3. DNS model

3.1. Governing equations

The DNS model, developed for the 3-D regular CL
microstructure in our companion paper [1], is extended here
to solve the charge and oxygen concentration conservation
equations on the random 3-D microstructure. The basic model
assumptions remain the same as in Part I [1]. The meaning of
the symbols can be found in the nomenclature.

s
v

f

C
c

ig. 3. Variation of transport pore volume fraction and phase interfacial area
atio with nominal porosity.
The discrete phase function, f, introduced in Part I [1] for the
ingle-domain approach, is redefined for the elementary control
olumes within the computational domain as:

(i, j, k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 ‘‘transport” pores

1 ‘‘transport” electrolytes

2 ‘‘dead” pores

3 ‘‘dead” electrolytes

(4)

orrespondingly, the proton conductivity and oxygen diffusivity
an be expressed in terms of the phase function, in the discretized
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fashion, as:

K(i, j, k)= {κ × f (i, j, k)×[2−f (i, j, k)]×[3−f (i, j, k)]} /2

(5)

DO2 (i, j, k) =
{

D
g
O2

× [1 − f (i, j, k)] × [2 − f (i, j, k)]

× [3 − f (i, j, k)]
}

/6 (6)

From the above expressions it is obvious that the proton conduc-
tivity and oxygen diffusivity identically go to zero in the “dead”
electrolyte and the “dead” pore cells respectively.

The governing differential equations for the conservation of
charge and oxygen transport, as detailed in the companion paper,
Part I [1], can be readily extended to be valid throughout the
domain by suitably expressing the source terms using the dis-
crete phase function, f(i, j, k). The source terms for charge and
oxygen transport, Sφ and SO2 , respectively, are defined at the
cell center (i, j, k) of the “transport” electrolyte and “transport”
pore cells next to each other, respectively, forming the active
catalyzed interface where the electrochemical reaction occurs.
The source terms in the discretized form can be expressed as:

Sφ(i, j, k) = − i0

c
g
O2,ref

f (i, j, k) exp

[
αcF

RT
φe(i, j, k)

]
×

{
[1 − f (i − 1, j, k)]

cO2 (i − 1, j, k)

�x
+ [1 − f (i + 1, j, k)]

cO2 (i + 1, j, k)

�x

+

, j, k

exp

xp[

In the present simulation, the proton conductivity is adjusted
using a Bruggeman type correlation to correct for the mixed
electrolyte/electronic phase according to the following expres-
sion:

κ = κ0 ×
(

εe

εe + εs

)1.5

= κ0 ×
(

εe

1 − εg

)1.5

(10)

where κ0 is the intrinsic conductivity of the electrolyte, εe, εs
and εg are the electrolyte, electronic and pore volume fractions,
respectively. In this study, the intrinsic ionic conductivity, κ0, is
considered to be constant since the membrane is assumed fully
humidified.

3.2. Boundary conditions

The boundary conditions used in the present simulation
remain the same as in the case of a regular 3-D catalyst layer
microstructure, described in Part I [1], except for the oxygen
concentration, cO2,0, at the CL–GDL interface. In the previous
study, the mass transport resistance in the GDL was ignored
and the oxygen concentration at the channel inlet was directly
+ [1 − f (i, j − 1, k)]
cO2 (i, j − 1, k)

�y
+ [1 − f (i, j

+ [1 − f (i, j, k + 1)]
cO2 (i, j, k + 1)

�z

}

SO2 (i, j, k) = − i0

4Fc
g
O2,ref

[1 − f (i, j, k)]cO2 (i, j, k) ×
{

f (i − 1

×exp[(αcF/RT )φe(i + 1, j, k)]

�x
+ f (i, j − 1, k)

×exp[(αcF/RT )φe(i, j + 1, k)]

�y
+ f (i, j, k − 1)

e

×exp[(αcF/RT )φe(i, j, k + 1)]

�z

}

The transfer current between the two neighboring cells form-
ing an active interface is given by the Tafel equation, which is
justified due to the small value of the exchange current density
of the ORR:

c (i + 1, j, k)
[
α F

]

j = i0

O2

c
g
O2,ref

exp c

RT
φe(i, j, k) (A/cm2) (9)

where φe(i, j, k) represents the cathode overpotential since both
the open-circuit potential and the electronic phase potential are
assumed constant. The prefactor, i0, is the modified exchange
current density as detailed in Part I [1]. It should be borne in mind
that the transfer current density, j, is negative for the electrolyte
phase.
1, k)]
cO2 (i, j + 1, k)

�y
+ [1 − f (i, j, k − 1)]

cO2 (i, j, k − 1)

�z

(7)

)
exp[(αcF/RT )φe(i − 1, j, k)]

�x
+ f (i + 1, j, k)

[(αcF/RT )φe(i, j − 1, k)]

�y
+ f (i, j + 1, k)

(αcF/RT )φe(i, j, k − 1)]

�z
+ f (i, j, k + 1)

(8)

applied on the right boundary i.e. at the CL–GDL interface. In
this work, the oxygen concentration drop in the GDL is further
included in order to provide a more realistic boundary condition.

The oxygen concentration in the gas channel is assumed
uniform, as shown schematically in Fig. 5, which physically

corresponds to a large stoichiometric flow rate. By employing
an effective oxygen diffusivity, D

g,eff
O2,GDL, through the GDL, the

oxygen flux at the CL–GDL interface can be written as:

NO2 = D
g,eff
O2,GDL × cO2,inlet − cO2,0

�XGDL
(11)

where �XGDL refers to the thickness of the GDL. The porosity,
εGDL and tortuosity, λGDL of the GDL are employed to define
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Fig. 5. Schematic diagram of the oxygen concentration profile in the cathode.

the effective oxygen diffusivity as:

D
g,eff
O2,GDL = D

g
O2

× εGDL

τGDL
(12)

D
g
O2

is the intrinsic oxygen diffusivity which in turn depends on
the specified pressure and temperature as [8]:

D
g
O2

= D
g
O2,0

(
T

T0

)3/2 (
p0

p

)
(13)

At steady state, the total flux through the GDL should be equiv-
alent to the oxygen consumption rate at the catalyst layer, that
is:

NO2 = I

4F
(14)

Thus, the oxygen concentration at the catalyst layer–GDL inter-
face can be derived by combining Eqs. (11) and (14) and is given
by:

cO2,0 = cO2,inlet − I × �XGDL

4F × D
g,eff
O2,GDL

(15)

It is evident that the corrected oxygen concentration depends not
only on the inlet oxygen concentration but also on the concentra-
tion drop through the GDL. At large operating current densities,
there could be a considerable drop across the GDL due to the
l

G

3
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Table 1
Model input parameters

Parameter Value

Proton conductivity of the fully hydrated membrane, κe,0 (S/m) 12.3
Reference intrinsic oxygen diffusivity, DO2

g,0 (m2/s) 3.2 × 10−5

Pressure at the channel inlet, p (kPa) 150
Operating temperature, T (◦C) 80
Thickness of the GDL, �XGDL (�m) 300
Porosity of the GDL, εGDL 0.4
Tortuosity of the GDL, τGDL 4
Natural porosity of the catalyst layer, εg 0.36
Electrolyte volume fraction in the catalyst layer, εe 0.3

4. Results and discussion

4.1. Three-dimensional potential and oxygen concentration
fields

DNS simulations with varying operating current density were
carried out on the computer-generated random microstructure
of the cathode catalyst layer. The predicted polarization curve is
shown in Fig. 6. As expected, the predicted polarization curve
has a fast drop in the small current density region controlled
by the ORR kinetics followed by a linear voltage drop in the
mixed kinetic-ohmic control regime and finally at current densi-
ties larger than 1.5 A/cm2, the mass transport limitation appears
with a fast voltage drop resulting from oxygen depletion.

Fig. 7 compares the characteristics of oxygen transport at
different current densities. Three-dimensional contours of the
oxygen concentration are plotted for 0.5, 1.5 and 2.0 A/cm2 cur-
rent densities. The oxygen concentration at the right boundary
(i.e. the CL–GDL interface) assumes a different value depending
on the operating current density as evident from Eq. (17). The
larger the current density, the greater is the gradient in the oxygen
concentration through the GDL. Thus, the oxygen concentration
at the CL–GDL interface becomes increasingly smaller with
arge oxygen flux.
The model input parameters including the properties of the

DL are summarized in Table 1.

.3. Solution methodology

The user defined functions (UDF) capability in the commer-
ial CFD software, Fluent® [9], was systematically deployed to
olve the conservation equations for charge and oxygen transport
ith proper attention to handling of the source terms as given
y Eqs. (7) and (8). Convergence was considered achieved for
ach scalar field when the relative error between two successive
terations reached 10−6.
 Fig. 6. Polarization curve predicted by the DNS calculation.
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Fig. 7. 3-D contours of the oxygen concentration (mol/m3) at 0.5, 1.5 and 2.0 A/cm2 current densities, respectively, from top to bottom.

the increase in the current density despite the constant oxy-
gen concentration at the channel inlet. At the current density
of 0.5 A/cm2, the cross-sectional averaged oxygen concentra-
tion is fairly uniform, varying from 5.1 to 5.6 mol/m3 across the
catalyst layer thickness. When the current density is increased to
1.5 A/cm2, due to both the mass transport resistance in the GDL
and large consumption rate, the concentration in the vicinity of
the membrane–CL interface diminishes leading to a nearly oxy-
gen depleted zone. Upon further increase in current density to
2.0 A/cm2, it is observed that oxygen depletion occurs in most
of the region of the catalyst layer, resulting in a very narrow
reaction zone next to the CL–GDL interface.

The corresponding reaction current distributions are dis-
played in Fig. 8. As expected, it shows a uniform reaction rate
across the thickness of the catalyst layer at 0.5 A/cm2; while at

the large current density of 2.0 A/cm2, the reaction is confined
to a narrow zone toward the front end where oxygen is avail-
able. The reaction current distribution at the current density of
1.5 A/cm2 is particularly unique in the sense that the reaction
rate is higher at both ends than that in the middle section. It is
believed that the combined effects of oxygen concentration and
electrolyte potential distributions lead to this special reaction
current profile. Near the membrane end, the large reaction rate
is due to the greater overpotential, while toward the GDL end,
the high reaction rate is not only due to the high concentration of
oxygen but also due to the availability of more “transport” pores.
A clearer picture is provided in Fig. 9 where the cross-sectional
averaged reaction current is displayed across the catalyst layer
thickness. The local “transport” pore volume fraction is also
included in the same figure to elucidate the effect of the local
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Fig. 8. 3-D contours of the reaction current (A/m2) at 0.5, 1.5 and 2.0 A/cm2 current densities, respectively, from top to bottom.

porosity variation. It can be clearly seen that the local reaction
current oscillates following the local “transport” pore volume
fraction. Obviously, more transport pores essentially lead to a
greater interfacial active area for reaction, resulting in a larger
reaction rate.

4.2. Comparison between the DNS and 1-D
macrohomogeneous model results

One of the major implications of constructing a random
microstructure is to provide phase interfacial area and tortuosity
comparable to that of a real catalyst layer microstructure. There-
fore, solving point-wise conservation equations on a realistic
structure, we can, in essence, evaluate the Bruggeman corre-
lations required for macrohomogeneous models. Bruggeman

correction factor, ξ, is commonly applied to determine the effec-
tive transport properties as follows:

Γ eff
k = Γk × ε

ξ
k (16)

In the 1-D macrohomogeneous model, the same specific surface
area a (cm2/cm3) as that in the constructed random structure is
used in the Butler–Volmer equation to represent the volumetric
reaction current, that is:

j = a × i0

[
exp

(
αaF

RT
η

)
− exp

(
−αcF

RT
η

)]
(A/cm3)

(17)

The comparison of polarization curves predicted by the DNS
and 1-D macrohomogeneous models is shown in Fig. 10. Three
different Bruggeman factors, 1.5, 3.5 and 4.5, are attempted. It
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Fig. 9. Reaction current and effective porosity distributions across the catalyst
layer thickness at different current densities.

can be seen that at small current densities (up to ∼1 A/cm2),
a factor of 3.5 gives a good agreement to the DNS predic-
tions; while in the large current density regime, a value of the
Bruggeman factor between 3.5 and 4.5 is suggested. Detailed
comparisons at the current density of 1.5 A/cm2, such as the oxy-
gen concentration distribution, electrolyte phase potential and
local reaction current distributions are depicted in Figs. 11–13,
respectively.

In the case of the oxygen concentration (Fig. 11), the DNS
result is in good agreement with the 1-D homogeneous model
prediction with the Bruggeman factor of 4.5. However, Fig. 12
shows that the factor of 3.5 gives a better match for the shape of
the overpotential curve except that the DNS result is about 12 mV
higher consistently. The higher surface overpotential stems from
the lower active interfacial area in the DNS model. It can be
seen from Fig. 3 that there are only about 65% of the total
interfacial area that is active for the electrochemical reaction.

F
a

Fig. 11. Comparison between the cross-sectional averaged oxygen concentra-
tion profiles from the DNS and 1-D macrohomogeneous model predictions.

Combination of the findings from Figs. 11 and 12 suggest that
the phase with low volume fraction, i.e. the gas phase in the
present study, prefers a higher Bruggeman factor. This could be
not only because of less tortuosity but also because of a lower
effective porosity than the natural porosity for the gas phase. If
using the effective porosity of 0.26 in the Bruggeman correction
instead of the natural porosity 0.36, the Bruggeman factor would
be about 3.4 (i.e. 0.263.4 ≈ 0.364.5), very close to the value (i.e.
3.5) for the electrolyte phase. Another point worth noting is that
the constructed 3-D microstructure features the influence of local
variation in the effective porosity on the reaction current distribu-
tion; while the macrohomogeneous model only uses a constant
natural porosity. As shown in Fig. 13, the DNS model generates a
more uniform reaction current distribution than those of macro-
homogeneous models with the Bruggeman factors of 3.5 and 4.5.
As displayed in Fig. 4, although the natural pore volume fraction
of this porous medium distributes uniformly around the average

F
f

ig. 10. Comparison between the polarization curves from the DNS calculation
nd the 1-D macrohomogeneous model.
ig. 12. Comparison between the cross-sectional averaged overpotential profiles
rom the DNS and 1-D macrohomogeneous model predictions.
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Fig. 13. Comparison between the cross-sectional averaged reaction current dis-
tributions across the thickness of the catalyst layer from the DNS and 1-D
macrohomogeneous model predictions.

porosity, the effective porosity varies across the thickness of the
catalyst layer. More “transport” pores toward the front end than
near the back end makes a unique reaction current distribution
that cannot be captured by the macrohomogeneous model using
any Bruggeman correction factor.

5. Conclusions

Random nature of a porous catalyst layer is resolved by gen-
erating a purely disordered microstructure using a simplified
variant of the stochastic approach. Influence of the microstruc-
ture properties (e.g. pore distribution) on the underlying trans-
port phenomena and mutual interaction are demonstrated. The
relative importance and influence of ionomer proton conduction
and oxygen transport are clearly depicted by the reaction cur-
rent distribution at different current densities. The distribution
of the reaction current with the variation of the effective porosity
across the catalyst layer thickness is uniquely captured by the
DNS model, which is otherwise not delineated by the macro-
homogeneous models. Finally, the Bruggeman correction factor
(∼3–3.5) evaluated from the DNS calculation is a valuable input
to the macroscopic fuel cell models and hence underscores the
striking advantages of the DNS method over the macrohomoge-
neous models.
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ppendix A

omenclature
specific interfacial area (cm2/cm3)

i local concentration of species i (mol/m3)
k

ubscripts and superscripts
electrolyte phase

ff effective
gas phase

DL gas diffusion layer
nlet gas channel inlet

catalyst layer thickness
2 oxygen

ef reference value
boundary value at the CL–GDL interface or ini-
tial/intrinsic value
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