

1 8 5 5

Electrochemical Engine Center

Computational Fuel Cell Research and SOFC Modeling at Penn State

Chao-Yang Wang

Professor of Mechanical Engineering, and Materials Science & Engineering Director, Electrochemical Engine Center (ECEC) The Pennsylvania State University University Park, PA 16802 USA Email: cxw31@psu.edu

Presented at NASA Solid Oxide Fuel Cell Modeling and Simulation Workshop NASA Glenn Research Center, April 11, 2003

URL: mtrl1.me.psu.edu

Outline

- Overview ECEC
- Computational Modeling of PEM Fuel Cells
- SOFC Modeling & Simulation
- Fuel Cell Controls
- Summary

ECEC Overview

- Vision: provide fuel cell science & technology for sustainable energy future
- Mission: organize and conduct multidisciplinary research on fuel cells and advanced batteries for vehicle propulsion, distributed power generation and portable electronics
- Provide experimental & computer modeling facilities for multidisciplinary graduate education (DOE's GATE & NSF GK-12 programs)
- Interdisciplinary team: 6-10 faculty, 5 research associates, 25 grad students, 5 undergrad assistants & 1 staff assistant
- Expertise areas: electrochemistry, materials science, multiphase transport, reactive flow, CFD modeling, experimental diagnostics, invehicle testing, advanced materials.
- Focus on design, modeling, fabrication, diagnostics and system integration of PEMFC, DMFC, and SOFC

ECEC Facilities (>5,000 sq ft)

Fuel Cell/Battery Experimental Labs

Kinetics and Thermal Transport Fuel Cell/Battery Simulation and Parallel Computing

Fuel Cell Materials Research and Component Fabrication

H₂/Air PEM Fuel Cells: Modeling

- Computer simulations are increasingly part of of the discovery and design process in the competitive field of fuel cells.
- **ECEC vision**: FC Modeling must consist of four elements:
 - physico-chemical model development
 - advanced numerical algorithms
 - materials characterization (to provide accurate input parameters)
 - experimental validation at detailed levels

Physico-chemical Model Development

- Main features of ECEC models (available as in-house code, user code for STAR-CD or UDF for Fluent):
 - electrochemical and transport tightly coupled
 - fully resolve gas channels, GDL, catalyst layers & electrolyte
 - 3-D; steady-state and transient operation
 - water and proton co-transport in polymer electrolyte
 - accurate modeling of liquid water transport in hydrophobic GDL (ECEC's M2 model) and water management
 - Detailed MEA model

Size of Numerical Problem: The Mesh

- Computational Mesh:
 - Through plane direction: 6-8 grid points in each of 5 distinctive regions of MEA + 10 points in each channel = 50-60
 - Along-channel direction: 100-120 points
 - In-plane: 10 points in channel and collector shoulder = 20 grids/flow channel
- Reasonable Mesh Size: 50X100X400 (for 20channel flowfield)= 2x10⁶ gridpoints!

Massively Parallel Computations

• ECEC has a 50-node Linux cluster (1.4GHz AMD processors) dedicated to fuel cell simulation and stack design

- parallel-computing individual cells in a stack with each computer node for one cell
- domain decomposition for large-scale simulation

• PSU clusters: Lion-XL (160 2.4GHz P4 processors), Lion-XE (256 1GHz P3 processors)

Massively Parallel Computations

- Parallel computing performance
 - >7x speed-up with every 10 nodes
 - roughly 300 iterations
 - <1.5 hours for 1M comp. cell problem with 10 nodes

Ex: Large-Scale Cell Simulation

36-channel, double-pass serpentine fuel cell

Cell Specifications:

- Anode: 2 passes are co-flow
- Cathode: 2 passes are counterflow
- Membrane: N112
- A/C Stoich: 3/2 @ 1 A/cm²
- A/C Pressure: 2.1 bars
- T_{cell} : 80°C; V_{cell} =0.65 V
- A/C RH: 100%/5%

Computational details: 2.56 M cell mesh, 300 iterations for convergence, **5 hours** on ECEC Linux cluster using **9 processors**.

Macro View: O₂ Distribution

Macro View: H₂O Distribution

• Anode gas channels • Cathode gas channels

Macro View: Current Distribution

SC 5-CURR (A/m^2)

LOCAL MX= 0.1373E+05 LOCAL MN= 4460.

	0.1373E+05
	0.1306E+05
	0.1240E+05
	011745+05
	0.11746+00
_	U.IIU0E+U3
	0.1042E+05
	9755
	0,00.
_	3030.
_	8431.
	7770.
	7108
	7100.
_	6446.
	5784.
	5122
	0122.
	4460.

Micro View: Current Density Profile

Micro View: Water Content Profile

Water content @ cathode/GDL interface in the middle section of gas channels ($V_{cell}=0.65 \text{ V}$; $I_{avg}=0.91 \text{ A/cm}^2$)

Flooding Prediction by M2 Model

• Fully 3-D, two-phase, whole cell modeling and flooding prediction as function of the GDL wetting properties are available.

Flooding Prediction by M2 Model

Source: Pasaogullari & Wang, ECS Paris Mtg, April 2003.

Flooding Prediction by M2 Model

Current Distributions w/ and w/o Flooding

Source: Pasaogullari & Wang, ECS Paris Mtg, April 2003.

Effect of Inlet Humidity

Note that M2 model can predict single-phase region in low-humidity operation, location of the onset of liquid water (unknown *a priori*), and two-phase region all together in one problem.

Effect of Stoichiometry

Effect of Stoichiometry

Materials Characterization

- Materials properties are required on
 - Membranes
 - Membrane-electrode assembly (MEA) properties including
 electrokinetic data for catalyst layers
 - Gas diffusion layers (GDL)
 - Bipolar plates
 - Chemical reactants and products.

SEM of Toray carbon paper

SEM of carbon cloth

Materials Characterization

Water drops on GDL surface at 70 °C

Highly hydrophobic GDL

Hydrophobic GDL

Hydrophilic GDL

Experimental Validation

Is Pol Curve Sufficient for Model Validation?

• Consider a single-channel, 7 cm long fuel cell with Gore 18 µm membrane and operated at 80°C and A/C stoich of 3/2 and RH of 42%/dry.

• Obviously the average I-V curve is largely insufficient for validation of detailed fuel cell models. Experimental validation at the distribution level (current, species and temperature) is required!

Detailed Diagnostics

- ECEC has extensive MEA fabrication and fuel cell test facilities for experimental diagnostics and model validation.
- These data include not only I-V curves but also detailed distributions of current, species, and temperature as well as visualization of two-phase flow and flooding.
- ECEC has developed unique capabilities for current, concentration and (membrane) temperature mapping.

Segmented flow plates w/ 48 separate current collection ribs for current density distribution measurement by a multi-channel potentiostat

a 50cm² cell in testing for current and concentration mapping

Measured Current Distributions

Measured Water Distributions

Validation by Current Distribution Data

Comparison of average polarization curves for 3.0 @ 0.75 A/cm² cathode stoichiometry

Solid Oxide Fuel Cells

Electrode Reactions

Oxidation of fuel at anode

 $H_2 + O^{2-} \rightarrow H_2O + 2e^-$

Reduction of oxidant at cathode $\frac{1}{2}O_2 + 2e^- \rightarrow O^{2-}$

Cell Materials

Anode:

Nickel / Yttria – Stabilized Zirconia Cermet

Cathode:

LSM Layer: La_{1-x}Sr_xMnO₃

Electrolyte:

YSZ: Y₂O₃ doped ZrO₂ material

SOFC Modeling

- SOFC modeling is simpler than PEMFC as there is no complex water transport and distribution issue
- It is a problem very similar to chemically reactive flows except that there is charge transport thru electrolyte and active layers.
- New numerical issues are: (1) nonlinear source terms described by Tafel kinetics; (2) multiple anodic reactions (e.g. H₂+CO oxidation); (3) solution of two potential equations (electronic and ionic); and (4) implementation of constant total current as a boundary condition instead of a constant cell voltage;
- ECEC has developed a unified framework for SOFC and PEMFC modeling, with the former requiring no elaborative treatment of water transport.

SOFC Model Equations

	Conservation Equation	Source Terms				
	Conservation Equation	Flow Channels	Porous Electrodes	Active Electrodes	Electrolyte	
Mass	$\frac{\partial(\varepsilon\rho)}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0$			7	- ^	
Momentum	$\frac{1}{\varepsilon} \left[\frac{\partial \rho \vec{u}}{\partial t} + \frac{1}{\varepsilon} \nabla \cdot (\rho \vec{u} \vec{u}) \right] = -\nabla p + \nabla \cdot \tau + S_u$		$S_u = -\frac{\mu}{K}\vec{u}$	u = 0	u = 0	
Species	$\frac{\partial (\varepsilon c_k)}{\partial t} + \nabla \cdot (\vec{u} c_k) = \nabla \cdot (D_k^{eff} \nabla c_k) + S_k$			$S_k = -\frac{s_k j}{n F}$		
Charge	$\nabla \cdot \left(\kappa^{eff} \nabla \Phi \right) + S_{\Phi} = 0$			$S_{\Phi} = j$		
Heat	$\frac{\partial (\varepsilon \rho c_P T)}{\partial t} + \nabla \cdot (\rho c_P \vec{u} T) = \nabla \cdot (k^{eff} \nabla T) + S_T$			$S_{T} = j \left(\eta + T \frac{dU_{0}}{dT} \right) + \frac{i^{2}}{\kappa^{eff}}$	$S_{T} = rac{i^{2}}{\kappa^{eff}}$	
Electrochemical Reaction: $\sum_{k} s_{k} M_{k}^{z} = n e^{-}$ where $M_{k} \equiv \text{chemical formula of species } k$ $s_{k} \equiv \text{stoichiometry coefficient}$ $n \equiv \text{number of electrons transferred}$						

Source: Pasaogullari & Wang, SOFC Symposium VIII, April 2003.

Electrolyte-Supported SOFC

- Cell Dimensions (2.5 cm²)
 - Cell Length: 16 mm
 - Anode Channel: 2x2 mm²
 - Anode Electrode Thickness: $50 \ \mu m$
 - Cathode Electrode Thickness: 50 µm
 - Cathode Channel: 2x2 mm²
 - Electrolyte: 180 µm
- Operating Conditions
 - Operating Temperature: 1000°C
 - Anode Stoichiometry: 1.5
 - Cathode Stoichiometry: 2.0

Cross Flow SOFC Configuration

Electrolyte-Supported SOFC

• Electrochemical, flow, transport and thermal coupled modeling in 3-dimensions

Current Distribution

Thermal effect is insignificant here due to small cell size

Electrolyte-Supported SOFC

• **3-D** reactant concentration contours

O₂ Concentration in Cathode of SOFC

 $\rm H_2$ Concentration in Anode of SOFC

- Geometry
 - 10-Channel Cross-Flow
 - Anode Electrode: 1mm
 - Cathode Electrode: $50 \ \mu m$
 - Electrolyte: 10 µm
- Operating Conditions
 - 2 atm Anode/Cathode Inlet Pressure
 - Operating Temperature: 800°C
 - Anode/Cathode
 Stoichiometry: 2/2 @ 2 A/cm²

 H_2 Concentration (mol/m³) at Anode-Interlayer Interface

ECEC Fuel Cell Controls Group

Summary

- Multidisciplinary computational fuel cell research encompasses: (1) physicochemical model development, (2) numerical algorithm development, (3) materials characterization, and (4) model validation at detailed levels.
- PEMFC model is mature for use in product design and optimization. Considerable capabilities are available: fully coupled electrochemical/ flow modeling, 3-D, water and heat management, cathode flooding, CO poisoning, cold start, etc.
- ECEC also has developed an electrochemical-transport coupled model for SOFC in commercial CFD packages.
- Fuel cell control strategies are studied and integrated at early stages to enable design for high performance, design for robust controls, or design for high reliability.

Acknowledgements

- ECEC Team, and former graduates and associates
- U.S. DOE, DOD, DOT, NSF, Sandia, Argonne, NETL
- Many industries worldwide