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Numerical solutions to partial differential equations form the backbone of mathematical models that simulate the behavior of
various electrochemical systems, specifically, batteries and fuel cells. In this paper, we present a set of numerical algorithms
applied to efficiently solve this system of equations. These fast algorithms are identified by fully understanding the physics of the
problem and recognizing the strength of the coupling between the governing equations. We illustrate this coupling, specifically in
the two potential equations, and demonstrate the need for their simultaneous solution using the Newton method. We take a 2D
thermal and electrochemical coupled Li-ion model and extend the familiar (Basdbroutine by utilizing a Krylov iterative

solver, a generalized minimal residual subrouti®VRES), instead of the direct solveiGauss eliminatiop to improve the

solution efficiency of the large, nonsymmetric Jacobian system. In addition, we use a nonlinear Gauss-Seidel method to provide
the initial guess for the Newton iteration, and precondition the GMRES solver with a block Gauss-Seidel and multigrid algorithm
with a smoother based on the tridiagonal matrix algorithm. Every stage in this process has been seen to add to the efficiency of
the resulting computer simulation with the final result being a substantial improvement in computation speed, namely, simulating
complete discharge of the cell in less than 10 min for grid size 0K432.
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The recent need for alternatives to the previously used combusdependent variables, initial and boundary conditions, results in the
tion engine for transportation has led to the development of electricestimation of the dependent variables. One way to achieve this is to
and hybrid electric vehicles. This need has spurred research intdiscretize the PDEs using a finite difference or finite volume method
advanced batteries used in these applications, with emphasis on opnd expressing them as a set of nonlinear algebraic equations, which
eration under various conditions and on materials and cell construcare then solved. The discretization process is common to the various
tion to enhance cycle-life and performance. This research effort hasnethods used in the electrochemical literature. Subsequently, the
been undertaken by extensive experimental testing of cells and bylgebraic equations are solved either sequentially using an iterative
using computer simulations based on various techniques, includingrocedure or simultaneously using Newton's methdthe former
those that are trained to date.g, neural network and those de- method is attractive due to its simplicity but is inefficient and not
veloped based on the physical and chemical laws of the processasbust when the equations are strongly coupled with each other. The
occurring in the cellfirst principleg). These models are expected to |atter is the procedure in the Bai@subroutine where the Jacobain
play a critical role in cell design for a specific application, in pre- matrix resulting from the Newton’s procedure is inverted using LU
dicting behavior under various conditiofesg, dynamic stress test  factorization in each Newton iteratiGn similar procedure is used
and in the integration into system models in order to predict thein the standard DASSL subroutifiayhich has also been applied to
behavior of the whole vehicle. This latter feature adds a new level ofpattery simulation. However, the direct solution of the Jacobian ma-
complexity into these models, as computational speed becomes afiix is computationally inefficient, especially when dealing with
important criterion. two- or three-dimensional problerfisThis inadequacy has been

In addition, as the models developed are made more compreherpartly overcome in the DASPK software where the Jacobian matrix
sive with inclusion of the thermal behavior in addition to the is solved iteratively using an incomplete generalized minimal re-
electrochemistry, detailed transport and electrochemical mecha- sidual(GMRES subroutind and sometimes coupled with an incom-
nisms(e.g, solid phase diffusion*® and multidimensional effects, plete LU factorization precondition&°Here the Jacobian matrix is
significant numerical challenges arise, thereby requiring robust nunot explicitly required and is evaluated in an approximate manner.
merical techniques. It is also desirable that the numerical method$iowever, DASPK is a general-purpose solver used in a wide variety
developed be both optimal in computational efficiency and scalableof applications and therefore is not tailored for battery simulation.
to be readily amenable to parallel computing that will become rou-Hence, considerable improvement in efficiency can still be gained
tine in the near future. An algorithm is optimal if the computational py understanding the unique physics of the battery problem and
complexity is of the order of the number of unknow@¥n), where  choosing mathematical algorithms accordingly. For example, a sys-
n denotes the number of unknowns. Gaussian elimination, for extem where the equations are decoupled from each other could be
ample, requiresO(n®) operations and hence is not an optimal easily solved using a sequentially iterative technique, whereas use of
algorithm® However, some multigrid methods feature computa- the Newton method would involve undue complexigvaluating
tional complexities of0(n). When implemented on a parallel com- Jacobianswhile providing little, if any, improvement in computa-
puter with multiple processors, such optimal and scalable algorithmgion speed. . . o
would permit solutions of problems in multidimensions with a large  The purpose of this paper is twofold) to gain insight into the
number of computational nodes and multiple physicochemical pro-Physics of the battery problem by studying the coupling between the
cesses, like in fuel cell systems, without dramatically increasingvarious governing equations, aié) to develop and apply a set of
computation time. advanced solution algorithms specifically tailored for strongly

The mathematical representation of the various phenomena in &oupled equations governing battery behavior. To achieve the
battery results in the generation of a number of coupled, nonlineaformer, we use a Newton method code and investigate the effect of
partial differential equationsPDES, that are time and space decoupling the equations from each other on the efficiency. The
dependent.” The solution of these equations for a given set of in- latter is achieved by using the Newton's procedure to linearize the

nonlinear system, wherein the initial conditions are generated using
the nonlinear Gauss-Seidel method. The resulting linear set of equa-
*El . ) tions are then solved using an iterative procedure, the GMRES sub-
ectrochemical Society Student Member. . . . - .
** Electrochemical Society Active Member. routine, along with block Gauss-Seidel and multigrid precondition-
Z E-mail: cxw31@psu.edu ing. This procedure for the solution of the problem, as opposed to
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equilibrium potential as a function of concentratiare largely in-
dependent of solution procedure and the insight outlined here. See
Ref. 3 for these parameters.

Cul| (=) Mass balance—Using the volume-averaging method to repre-
T = sent the concentration of species, the mass balance in the solution
separator o o1 and solid phase can be represented using
' a(ect) o1-t
5 _ W = — 2L = V. (DfVcl) + ——— [3]
5 discharge SECSFE R at
[T . { . .
& —:;> i(eecs) _jM (4]
‘E < > s at F
E : The reaction currenf' is related to the surface overpotential

through the Butler-Volmer equation, namely
aF o 5
exg R M| T W TRT M (5]

for both the electrodes, with the parameters being different in each.
The exchange current density is a function of concentration of
lithium in both the electrolyte and the solid phase and is given by

i) = K(Cg)™C5'max = C59) *(Ce) [6]

JLi = a.ioj

wherek is determined from the initial exchange current density and
species concentration. In addition, the overpotential is related to the
surface concentration through the equilibrium potential

nj = dbs— be — Uj(Ch) [7]

Figure 1. Schematic of the Li-ion cell modeled in this study. The cell con- h d trati f lithi t th lectrode/
sists of a carbon negative and manganese oxide positive electrode with a LT € area-averaged concentration of lithium & € electrode

salt electrolyte. The active material is assumed to consist of many sphericaflectrolyte interface is determined by

particles. - Li

Ds i _ i ]
I_se (Cse - Cs ) - _E [8]
the direct solution used in Baall, provides considerable improve- Charge balance—Charge conservation is expressed through

ment in computation speed in this system, as the 2D nature of theyhnys Jaw in the matrix and a modified Ohm's law in solution,
problem results in a large sparse Jacobian matrix. The methods OUF'espectiver given by

lined here and the insight gained are expected to be useful in the

development of efficient algorithms for all electrochemical systems, V. (c®Voy — jH =0 [9]
which have a large computational domain with multidimensional off off L L
effects, like fuel-cell systems. V- (k¥Vde) + V- (kpViIncy) +j7 =0 [10]
Problem Formulation and Model Equations where the diffusion conductivity &, is given by
Figure 1 schematizes the dual lithium ion insertion cell modeled ORT« " dinf
in this study, consisting of a carbon negative electrode, a separator, k&= — (1-tD[1+ _i) [11]
and a positive manganese dioxide electrode. Both active materials, dince

consisting of a large number of particles, assumed to be spherical in .
this study, are pasted on conductive grids forming a porous elec; Energy balance—The energy balance is developed based on the

trode. The whole cell is filled with electrolyte, which is a solution of g’:;l heeatug(teigﬁrf;tlg)r: :g(;?ec:jdésl-lere, in each control volume, the
lithium salt in a nonaqueous solvent. The reactions during charge- gy €q P

discharge in the two electrodes can be represented as a(pCyT)
dischar -V ()\VT) " a [12]
ge Jat
. .4+ — E— .
Liy xMn,O, + xLi™ + xe-  LiyMn,O, (1] where the heat generation rate is expressed as
charge ou
discharge q= jLi bg— b — Uj + T G_TJ + O'Efde)S~ Vobg
Li,C, LiCg + xLi™ + xe~ [2] .
«Cs 6 + k*Vhe - Voo + &V Incl - Vo, [13]

charge

with the reaction occurring at the electrode/electrolyte interface anq\?(/)?]'ée tt:: J{LS;rtngnsregersezgtst 233}:::;:; due to electrode reac-
sustained due to lithium diffusion from/into the bulk of the solid ! P 9-
phase. The present model is the same as the one described in Ref. 3 Initial/boundary conditions—Uniform initial concentrations are
and thus is not elaborated here. Instead, we only provide the basiassumed everywhere, leading to

governing equations for species, charge, and energy balance, as de- L L L L

tails of the values of the parameters and their interdependenge Ce = Cep Cs =Cso T=T, [14]
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The computational domain is confined between two current collec-  Tpje |. The maximum norm of the residual with iteration num-
tors with internal boundaries being represented by continuity of the  per during the Newton iteration showing the speed of conver-
various phases. As no reaction occurs at the current collector sur- gence of the Newton’s method.

faces, the boundary conditions are expressed as

. . m m|
acé' acls_l Ide HT] ”oc
T "0 55 =0 55 =0 [15] 1 1.0495364 X 102
2 3.4196594 x 1074
—7
Current is applied at the top of the célhrough the tabhsand heat is 2 74618763 X 10710
dissipated either through the tabs or from the sides as well. These 7:2593409 X 10713
are expressed as 5 51082980 % 10
Aty = H 6 3.3319922 X 10
y 7 21239212 X 10719
b
_geff S
o 3y | [164
oT be the 4 X 4n Jacobian matrix of the systeffs).
A —=h(T-T,) if x<Lgorx>L, [16b Using a previous iteration valus", we first solve the linear
ay system
At the other ndari
t the other boundaries IsMm™ = —f(s™) [21]
J
s _ g [174
on to evaluaten™, from which the value of in the next iteration is
oT calculated by
-\ n - h(T — T.) [170]

ST = s" 4+ " [22]
Discretization

The transient terms are discretized by a fully implicit scheme | gther words, Eq. 21 defines the direction veatoe R*", called
making use of the backward Euler method. For example, Eq. 4 ishe Newton direction, which is followed in Eq. 22 by a unit step in

expressed as this direction in order to move from the current pogitto the next
) ) it point s™"1. The convergence of Newton method is locally
(ecs)p — (eLs)) = —At =3 [18] quadrati¢? and has been found to be particularly fast for the present

model problem. Table | lists the maximum normgf at each time

where the subscript p denotes the nodal point where the discretiza P and shows that the solution to Eq. 19 can be obtained in a few

L . : terations using this method.
tion is performed and the term with the superscript O represents the - . . S . _—
value at the previous time step. A critical step in the Newton iteration is the choice of the initial

In order to discretize the spatial terms, we choose the finite vol-UEss. As choosing an initial guess at the beginning of the simula-

ume formulation as detailed by PatankaHere the computational go;uzc;r_tsh; dg;?l::ét[?]rg%)tlgrz(;ilg|ftfr|]<;ultt\;v\(/)ve g:gﬁﬁ;:see 3;?06&0”';"3&
domain is divided into a number of control volumes with each con- p a g.

trol volume surrounding a grid point. Each differential equation is ?tlggatilc?r; VAVPtg:rhtr:(Se fti?:tntirlrj]?gteas ttr?; Irneltl/%u%uceosr?vgr)r;Qio’}llimf?s
integrated over the control volume and the resulting first derivatives . P, p 9

expressed using a two-point difference, assuming a linear profile, t0 gﬁgéoo?ih?fgg;ﬁggr:o;tpf[?]\é'déﬂ?r:gteg;agesl[:mahgolﬁesjgrorif?smg(r_'
yield an algebraic equation, which depends on the values of the) . ’ . P !
dependent variables at the nodal points adjacent to the point undé?eCted that in more complex profiles, like current-interrupt and pulse

consideration. As the methodology involves integrating the govern-ggfmg'i?fg}g:i:géh?hseolgé'r?\?e?tggesgist\ﬂ)onust::;nigf}ﬁﬁézrc%n;ggf'
ing equation over the computational volume, conservation of the y 9 '

quantities is always ensured, even when a small number of nodafgdel initial guess solver would be crucially needed at each time
points are used. In contrast, equations obtained using finite- P L L . LU L
Note thatj~' is an implicit function ofcg', c5', de, and ds,

difference and finite-element methods are truly conserved only when o - g
the number of grid points is infinitely large. In addition, as interfaces Which can be seen by substituting Eq. 6 into 5, wheyecg,, and
are chosen at the faces of the control volume, continuity at thec’' are all functions of"'. Therefore, the accuracy with whigh is
interfaces is ensured automatically. calculated in each Newton iteration would have a significant effect
on the convergence rate. In order to increase the accuracy of this
calculation, the Newton method is also used to obtain the value of
The resulting set of coupled algebraic equations are solved using-' at each vertex, which is @ocal) one-dimensional problem. Since
the Newton’s method at each time step. As explored later in theboth o, and o, are less than 1, there are singular points for the
paper, the equations for the potential in the matrix and the solutiorfunction expressed in Eq. @.e., the Jacobian derivative has nega-
are strongly coupled to each other, necessitating the use of this akive exponents in the variablet!). If the solution is near the singu-
gorithm. Let us represent the set of algebraic equations in vectoyy, point, then Newton's method is inefficient even with a good
notation as initial guess. For example, solving the simple equati¢r) = X
f(s) =0 [19] — 0.1= 0 by Newton’s method, starting from an initial guegs
= 0.1, results in the value going less than zero in the next iteration,
wheref:R*" — R*" wheren is the number of vertices in the grid. defined byx; = X, — g(X0)/9’(Xo), Where the prime denotes dif-
Let ferentials. Keeping the iterations in the definition domain is an im-
portant factor for the efficiency and robustness of Newton iteration.
Is) = ﬂ [20] This difficulty is circumvented by choosing the initial guess close to
as the singular point.

Newton’s Method
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GMRES Method Table Il. Effect of preconditioning on the efficiency of the

The use of the Newton method, as detailed above, results in the GMRES method. A block Gauss-Seidel and multigrid precondi-
conversion of the nonlinear algebraic equations into a linear system, tioning was used.

with a large and sparse Jacobian matrix. Solution of such a system

using direct solvers such as Gaussian elimination is inefficient. For

example, the computation work in Badglis O(J%n), wheren is Iteration Error Iteration Error

the number of unknowns antithe bandwidth of the matri%For a

Preconditioned GMRES GMRES without preconditioner

2D problem, such as the one in this papkis large (for example, 2 8'}1222222 i 18; g gégggggg i 18;
J~m= n for anmx m grid), suggesting that the banded 2 0-3136039 % 101 4 0.1956817 %< 10P
direct-solver would be inefficient. On the other hand, iterative tech- 5 0'2530226 % 102 8 0'9661916 % 10!
nigues provide considerable improvement in performance. For ex- 4 0-1815118 % 1073 16 0.5184772 % 101
ample, a preconditioned GMRES method would result in the com- ¢ 0'4202251 % 10°5 32 0'2799835 % 101
putation beingO[nlog(n)]; a significant improvement for a large 6 09042787 X 107 55 01548874 X 101
system. . _ _ .7 0.2034770 x 10® 110  0.8121148 X 102
However, because the matrix in Eq. 21 is not symmetric, tradi-
tional iterative methods like conjugate gradi€@G) and precondi-
tioned conjugate gradienfPCG cannot be applied. Hence, we 3 3 ] 3
choose GMRES, as introduced by Saad and Schtiliar solving Cle  “Cebs Vo Vel
this large, sparse, linear system of equations. While CG applies to Joc. Jow. Jow. JoT
symmetric matrices, GMRES is a Krylov subspace approximation J= se srs sre N [27]
method for general matrices. For simplicity, we rewrite Eq. 21 as oo oo, Jo, JogT
J J J J
=b [23] oo MO TTe M
For a given vectop = (p;, P2, Pz, Psg) € R*"
Given an initial guessy,, we setr, = b — Jn, and define the £, =31 [284]
Krylov subspace 17 Yo P1
- €2 = Jyu (P2 — JoLr) [28b]
K(J, k, ry) = spariry, Jrg, ..., 377 ry) [24]
€3 = Jy0.(P3 — Jpcf1 — Jou o) [28¢]
imatiom K+l saticfi _
the new approximatiom“** satisfies £, = I (ps — I — o f2 — Irg b3) [28d]
o = Inii4ll, = K“(“Jink r )Hb = Jme+ vl [25] Then& = (&1, &, &3, £4) = (D — L) !p is the desired vector.
Ve , K To

We arrange the unknowns in the order @f, ¢g, ¢, andT,
expecting D — L) to be close tal, then © — L) is a good pre-
This method of applying the GMRES evergteps, using the latest conditioner. Table Il shows the typical error estimates by our pre-
iteration as the guess for the next GMRES cycle, termed GMRES conditioned GMRES method compared to a GMRES method with-
is popular, as good performance is achieved with low storageout preconditioner, where both the speed and the efficiency of the
requirement§:*4 preconditioning are clear.

Preconditioners for the GMRES Method Multigrid method—In order to perform the above-described pro-

The effici  the GMRES hod d g . cedure, we need to obta[tg’egev and similar terms for a given vector
e efficiency of the method depends on many factors e . :

and most notably the condition number of the matti¢defined by v. This is equivalent to solving the system

(311372 for a matrix norm|| |). If J is close to identity, then the JoeW =v [29]
convergence of GMRES will be very fast. Therefore, a precondi-

tioner, M, is used and the following equivalent system is solved  \we note that the matrice&ece, s Jp o, Jrrare symmetric and

positive definite. Here we solve this system using the multigrid
M™n = M™'b [26] method, although any iteration method would suffieay, the tridi-
agonal matrix algorithr{TDMA), PCG.*® The multigrid method
has a very fast convergence speed which is independent of the grid
Size, and the number of whole arithmetic operations needed is only
O(n) [or O(n log n), more rigorously, wheren is the number of
the unknowns. This technique has been particularly useful in solving
%ymmetric positive definite problems arising from discretizing ellip-
tic or parabolic partial differential equatiof368|n addition, we
Block Gauss-Seidel methedWrite J = D — L — U whereD choose TDMA, an efficient solver for problems that are essentially

is a block diagonal matrix, antl and U are the strictly lower and ~ One-dimensional, as the smoother in each I&valhile the multi-
upper block triangular parts ofi(— D), respectively. If we assume grid method is more efficient than simple TDMA, especially for _th_e
thatM = D — L, thenM is also called the block Gauss-Seidel truly 2D problem, it is comparable for a nearly 1D problem. So it is

preconditioner. The efficiency of the block Gauss-Seidel precondi-"€/atively easy to get the vector= (D — L) 'y for any given -
tioner varies depending on the arrangement of the unknowns. If We_yectory. As the muIt|gr|o|1 method_ls_applled in the preconditioner, it
arrange the unknowns such that the nonzero parts and the relatively N0t necessary to gét . v and similar terms very accurately for a
large elements are predominantly in the lower block triangular part,given vectorv € R". In our numerical experiments on the model
thenM ~1J will be close to identity. This is ensured by manipulating problem only one or two iterations were needed to maintain the

the Jacobian matrix and expressing it as same convergence speed of the GMRES method. These suggest that

using the GMRES method. A good preconditioner possesses th
following propertiesi(i) for any vectorp., M 1. is obtained easily;
and (i) M~1J, in some sense, is close to identity. Among the nu-
merous preconditioning techniques, we choose the block Gaus
Seidel and multigrid techniques in this study.



Al1346 Journal of The Electrochemical Society49 (10) A1342-A1348(2002

w

Reaction Current (A/cma)

i

N
=3

45

I
o

40

INd
~

S AEEEr LA AERES LEARY REENY LARY REARY RENNN RRSEE RRRR

N
(S}

0 E
o 2 z
L = 2 -
= [ ]
L2 2 ]
5] 1.8 -
- o ]
- 16 =
14 =
1.2 3
i . . 1 . L _—

: i1 1 50 100

0 0005 001 0015 002 0025 003 0035 004 Time Step (s)

x location (cm)
Figure 3. CPU timevs.time step for the Li-ion code described here for a 3
Figure 2. Reaction current contours across the cell indicating the 2D natureC discharge with 45< 32 grid.
of the problem. The figure was generated at 842s duair3 Cdischarge.

- ) . . much more slowly than the time step, suggesting that the time step
our preconditioned GMRES method is very efficient. Notice that we can be increased even further, thereby improving convergence
use the GMRES method to get the Newton direction in the Newtongpeed, as long as accuracy is maintained.

method; therefore, there is no need to use the GMRES method to" | order to study the effect of increasing the time step on the

drive the residual to a very low degree. Experience suggests thajccuracy, simulations were conducted by increasing the time step
decreasing the residual from 1 to Toto 10°° is sufficient. from 2 s(where the solution time is approximately 10 mfn 120 s

In summary, the method presented in this paper involves dis{where the solution time is approximately 1 fiand the cell volt-
cretizing the PDEs using the finite volume method in order to ex-age and temperature are plotted in Fig. 4 and 5, respectively. The
press them as a set of nonlinear algebraic equations, which are thesurves were generated during 3 C discharge using a grid size of
solved simultaneously. This is achieved by first linearizing the equa-45 x 32. The negligible difference between the curves generated at
tions using Newton's method, with a nonlinear Gauss-Seidel methoghe two time steps assert to the usefulness of utilizing this method-
to obtain the initial guess, after which the linear system is solvedp|ogy for battery simulation. The 10-fold increase in the conver-

using the GMRES method, with a block Gauss-Seidel and multigridgence speed makes this an attractive feature of the presently devel-
preconditioning coupled with TDMA as a smoother in each level. gped methodology.

The procedure results in very efficient solution of the coupled

thermal-Li-ion code which involves gradients in two dimensions, as Partial Newton’s Method

igﬁqsﬂg& VI;:‘lg.aft’e\l’Ngi;e sthgurrgeﬂa;;tls?rzz(atf;::ehr;[rgés:tr_:_t;:gl(;?ggﬁirg:r?tthe- The numerical procedures illustrated entail generating the Jaco-
change in the reaction current both across the cell and with cel olfr?]sed()fa;ha?ytrirgtﬁ;xigutrr']?sg ;{:J%yN?rﬁgnt;tsekrf;)nn’ I;/:I)C\I/zt:/e\/rvas ep:)r(—_
height suggests the need for efficient algorithms. The efficiency ofy o 01 time consuming under some conditions. For example, the
the present algorithm is seen from the convergence central process-
ing unit (CPU) times shown in Table Ill, whera 3 Cdischarge is
simulated using a time step of 2 s. Table Ill also shows that as the

number of vertices increases, the CPU time increases lineaxly, 38 L T ]
O(n), as is theoretically expecté®618This points to the optimal ]
nature of the method, which along with its scalable nature makes it 3.6
particularly amenable for parallel computing.

In addition to providing efficient convergence in the order of
minutes for reasonable grid sizes, the method is also seen to cor__
verge at large time steps, where the convergence speeds are large
This is seen clearly in Fig. 3, where the CPU time, during one & 3.2
Newton iteration, is shown with the time step enlarged. The simu-&

= Time Step=2s
--------- Time Step= 120s

L DL

lations were performed for different time steps 83 Cdischarge S 3 _ _
using a 45X 32 grid. One can see that the CPU time increasesg B ]
o [ ]
28| .
Table Ill. CPU time with grid size for the Li-ion code generated E
during a 3 C discharge with a time step of 2 s. 26 ]
2D grid size CPU timemin) B P R R B T
o 200 400 600 800 1000
45 X 45 10 Simulation Time (s)
90 X 62 45
178 X 122 190 Figure 4. Cell potential durig 3 C discharge for simulation conducted using
354 X 242 800 a time step of 2 and 120 s with a grid size of 4532.
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340 77T T T due to the inexact Jacobian and the increase due to the increased
number of zeros have a negligible effect, leading to the overall neg-
ligible effect shown in Fig. 6. Therefore, these terms can be ne-
glected when generating the Jacobian matrix for battery simulation,
thereby making this time-consuming process considerably easier.

[
[5]
o

Coupling of Governing Equations

[
n
[=)

While use of advanced solution algorithms are essential to effi-
ciently solve a system of equations, a compromise between com-
plexity and efficiency can be achieved only by understanding the
physics of the system. In other words, knowledge of the nature of
the equations would provide us with guidelines for the choice of the
solver. One important criterion is the coupling between the various
equations solved, namely, the concentratigg. 3, potential(Eq. 9
and 10, and temperaturéEq. 12 equations. If the equations were
considerably decoupled from each other, the iterative procedure

‘ L o (like Picard’s iteration would suffice, while completely coupled
290 700 500 500 7000 equations would need to be solved simultaneo(issing the New-
Simulation Time (s) ton methogl. While the former offers simplicitye.g, no need for
Jacobiany its efficiency decreases as the coupling between the
Figure 5. Cell temperature evolution dugn3 C discharge of the cell using equations becomes more significant. The latter, while efficient,
time steps of 2 and 120 s with a grid size of 4532. would impose undue complexity when the system is simple. In order
to gauge the level of the coupling between the various equations in
battery modeling, four test simulations were conducted, namely
first two terms in Eq. 10 are difficult to differentiate as the conduc- Case 1: All the equations are couplédll Newton methodl.
tivity of the solution changes with concentration. A similar problem Case 2: The temperature equation is separated, while the others are
is encountered when differentiating the diffusion term in Eq. 3, assolved simultaneously.
the diffusion coefficient is dependent on the concentration, andCase 3: The concentration equation is also separated, along with the
hence changes across the cell. It would, therefore, be advantageotsmperature equation.
to simplify the process by neglecting these differentials and utilizing Case 4: All four are separatédquivalent of Picard’s method
the resultant inexact Jacobian in the Newton iteration. While this has  Figure 7 shows the CPU time during the simulation for three of
the disadvantage of changing the iteration path with a potential forthe cases. It can be seen that while case 2 and 3 result in a slight
slowing it down, it simplifies the solution of the Jacobians consid- increase in the CPU time, the change is negligible, suggesting that
erably because of the larger number of zeros in the matrix. Twothe temperature and concentration equations are reasonably decou-

w
=
o

Average Cell Temperature (K)
w
o
o

Time Step=2s
......... Time Step=120's

LI S Ny A R B L B I B Y L B B

cases are thus devised and investigated, namely pled from the potential equations. When the two potential equations
Case A: The differentiation of the terf - (x&'V In c5') in Eq. 8 is are also decouplease 4 the simulation time changes dramatically
not included in the Jacobian. with as much as 75 times decrease in performance. Clearly the two

Case B: In addition, the gradient &f in the termV - (x®™Vd,) in potential equations are the major cause for the inefficiency of se-
Eq. 8 and the gradient @°®" in the termV - (DeffVcti) in Eq. 3 are quential iteration techniques and require simultaneous solution.
not included in the Jacobian. These two equations are dependent on each other through the reac-
Figure 6 plots the CPU times. the simulation time during dis-  tlon current, where the overpotential appears in the exponential
charge, obtained from the full Newton method and the two casederm. Hence, small changes in the potential can lead to large changes
illustrated, respectively. The similarity for the three cases is clearlyin the current, especially when the exchange current density is large

seen. Detailed analysis shows that both the decrease in performanég-9- the Zn electrode in alkaline cellsHence, the possibility of the
solution changing significantly during each iteration step is consid-

erable, hence making it more difficult. This coupling of the two
potential equations with the relatively decoupled nature of the tem-
perature and concentration equations has been seen in other battery
P systems also. It appears that an effective way of taking advantage of
the ease of iteration techniques while combining the robustness of
simultaneous solvers is to solve the potential equations simulta-
L ] neously while solving the rest sequentially. This technique offers the
most potential for the solution of systems that have similar physico-
chemical behavior as that shown in this paper.
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4 i In this paper, we illustrate a set of numerical techniques that have
been found to be most efficient to solve the equations that describe
battery systems. We illustrate these techniques using a 2D coupled
thermal electrochemical first-principles model of a Li-ion cell. The
methods developed are based on Newton linearization of nonlinear
algebraic equations along with an iterative solver, GMRES, instead
of a direct solver(Gauss eliminationused in BandJ) algorithm.
2(')0‘ « ‘4(')0‘ . ‘6(')0‘ b ‘sclmo‘ ’ T_his is expected to be _critic_a_l in such large sparse systems whgere
Simulation Time (s) direct solvers are very inefficient. The Newton iteration method is
also made more robust by using a nonlinear Gauss-Seidel method to
Figure 6. CPU timevs. simulation time for the Li-ion code using the com- provide a good initial guess. In addition, we explore the robustness
plete and the partial Jacobians. The plot was generatedgdarid C dis- of the GMRES subroutine by using the block Gauss-Seidel and mul-
charge using a grid size of 48 32. tigrid preconditions, where significant improvements in performance
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700 " —T T T . List of Symbols
L o a interfacial area per unit volume, &ant
800 = P ¢’ concentration of lithium in the solid phase, molfEm
L ,./"/—/ ] Cé' max Maximum concentration in solid phase, M
500 /,./"’,/' . Eg'e concentration of lithium at the electrode/electrolyte interface, M
C . ] ¢t concentration of lithium in the electrolyte, mol/@m
s P ] C, specific heat capacity, J/kg K
“E’ 400 I ._/" 7] D¢ effective diffusion coefficient in the liquid phase, &
c r /.-’, ] D, diffusion coefficient in the solid phase, é
Sagpk /,./’//’ 7 f. mean molar activity coefficient of the electrolyte, molfem
o [ g i F Faraday’s constant, C/equiv
o - /./',/' ] h equivalent convective heat-transfer coefficient, Widtn
200 /./‘ # 1 ioj gxchange current Qensity of an electrode reaction j, A/cm
5 S ] I input current density, A/ch
[ //' ] i pore wall flux of lithium ion, mol/crA s
100 | - Case 1 _: lse diffusion length(R¢5 for spherical particles cm
N 7 Case 2 ] q volumetric heat generation rate, Jftg
L 7 ———— - Case3 ] R universal gas constant, J/mol K
[3) <SS —— - e ] Rs radius of the spherical particle, cm
0 200 ,400 . 600 800 1000 t%  transference number of the Liwith respect to the solvent velocity
Simulation Time (s) t time. s
50000 —— — . r —_— | . — . T absolute temperature of the cell system, K
| ] U; open-circuit potential data for the insertion materials, V
45000 |- = X coordinate along the cell width, cm
5 /.—"‘“: y coordinate along the cell height, cm
40000 = ‘,-’ E Greek
- 4 ]
35000 = .// E aga, a¢  transfer coefficients
B30000 | -7 E S porosity , -
Py 8 ’/ 1 m; local surface overpotential of reaction j, V
Eosono B - 3 k" effective conductivity in the liquid phas€ ™ cm*
= F = Case 4 ] k& diffusion conductivity,Q " cm!
2 20000 |- e 3 X thermal conductivity, W/cm K
o s e ] p density, g/crd
15000 |- e J o°  effective conductivity in the matrix phas® ! em™*
- v ] bs matrix phase potential, V
10000 = Prid - be solution phase potential, V
- -7 Gaeet,2.3 ] Subscript
5000 - 7 < / =3
C .~ . 0 initial condition
0 —_— ]
200 00 800

400
Simulation Time (s)
1.
Figure 7. CPU timevs.simulation time for the Li-ion code with the various
equations coupled with each other. While the top frame shows cases 1-3, the
bottom shows all four where the considerably larger time when all the equa- 5
tions are decoupled is clearly seen. ’

3.

were seen. In addition to identifying the set of algorithms that are %
most efficient for the solution of such systertimtteries and fuel 5
cells), we also provide insight into the physics of the equations by s.
studying their coupling. It is seen that the two potential equations

are strongly coupled with each other and have to be solved simul-"
taneously. On the other hand, the concentration and temperature
equations are relatively decoupled and can be solved separately. It i%.
proposed that an optimum algorithm for such systems, which com-

bines robustness with ease of usage, would be to solve the potentiaf-

equations simultaneously and couple this with the rest in a sequeng,

tial iteration procedure.
11.
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