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Newton-Krylov-Multigrid Algorithms for Battery Simulation
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Numerical solutions to partial differential equations form the backbone of mathematical models that simulate the behavior of
various electrochemical systems, specifically, batteries and fuel cells. In this paper, we present a set of numerical algorithms
applied to efficiently solve this system of equations. These fast algorithms are identified by fully understanding the physics of the
problem and recognizing the strength of the coupling between the governing equations. We illustrate this coupling, specifically in
the two potential equations, and demonstrate the need for their simultaneous solution using the Newton method. We take a 2D
thermal and electrochemical coupled Li-ion model and extend the familiar Band~J! subroutine by utilizing a Krylov iterative
solver, a generalized minimal residual subroutine~GMRES!, instead of the direct solver~Gauss elimination!, to improve the
solution efficiency of the large, nonsymmetric Jacobian system. In addition, we use a nonlinear Gauss-Seidel method to provide
the initial guess for the Newton iteration, and precondition the GMRES solver with a block Gauss-Seidel and multigrid algorithm
with a smoother based on the tridiagonal matrix algorithm. Every stage in this process has been seen to add to the efficiency of
the resulting computer simulation with the final result being a substantial improvement in computation speed, namely, simulating
complete discharge of the cell in less than 10 min for grid size of 453 32.
© 2002 The Electrochemical Society.@DOI: 10.1149/1.1505635# All rights reserved.
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The recent need for alternatives to the previously used com
tion engine for transportation has led to the development of elec
and hybrid electric vehicles. This need has spurred research
advanced batteries used in these applications, with emphasis o
eration under various conditions and on materials and cell cons
tion to enhance cycle-life and performance. This research effort
been undertaken by extensive experimental testing of cells an
using computer simulations based on various techniques, inclu
those that are trained to data~e.g., neural network1! and those de-
veloped based on the physical and chemical laws of the proce
occurring in the cell~first principles2!. These models are expected
play a critical role in cell design for a specific application, in pr
dicting behavior under various conditions~e.g., dynamic stress test!
and in the integration into system models in order to predict
behavior of the whole vehicle. This latter feature adds a new leve
complexity into these models, as computational speed become
important criterion.

In addition, as the models developed are made more compre
sive with inclusion of the thermal behavior in addition to th
electrochemistry,3 detailed transport and electrochemical mech
nisms~e.g., solid phase diffusion!,4,5 and multidimensional effects
significant numerical challenges arise, thereby requiring robust
merical techniques. It is also desirable that the numerical meth
developed be both optimal in computational efficiency and scala
to be readily amenable to parallel computing that will become r
tine in the near future. An algorithm is optimal if the computation
complexity is of the order of the number of unknowns,O(n), where
n denotes the number of unknowns. Gaussian elimination, for
ample, requiresO(n3) operations and hence is not an optim
algorithm.6 However, some multigrid methods feature compu
tional complexities ofO(n). When implemented on a parallel com
puter with multiple processors, such optimal and scalable algorit
would permit solutions of problems in multidimensions with a lar
number of computational nodes and multiple physicochemical p
cesses, like in fuel cell systems, without dramatically increas
computation time.

The mathematical representation of the various phenomena
battery results in the generation of a number of coupled, nonlin
partial differential equations~PDEs!, that are time and spac
dependent.2,7 The solution of these equations for a given set of
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dependent variables, initial and boundary conditions, results in
estimation of the dependent variables. One way to achieve this
discretize the PDEs using a finite difference or finite volume meth
and expressing them as a set of nonlinear algebraic equations, w
are then solved. The discretization process is common to the var
methods used in the electrochemical literature. Subsequently,
algebraic equations are solved either sequentially using an itera
procedure or simultaneously using Newton’s method.2 The former
method is attractive due to its simplicity but is inefficient and n
robust when the equations are strongly coupled with each other.
latter is the procedure in the Band~J! subroutine where the Jacoba
matrix resulting from the Newton’s procedure is inverted using L
factorization in each Newton iteration.2 A similar procedure is used
in the standard DASSL subroutine,8 which has also been applied t
battery simulation. However, the direct solution of the Jacobian m
trix is computationally inefficient, especially when dealing wi
two- or three-dimensional problems.6 This inadequacy has bee
partly overcome in the DASPK software where the Jacobian ma
is solved iteratively using an incomplete generalized minimal
sidual~GMRES! subroutine9 and sometimes coupled with an incom
plete LU factorization preconditioner.6,10Here the Jacobian matrix is
not explicitly required and is evaluated in an approximate man
However, DASPK is a general-purpose solver used in a wide var
of applications and therefore is not tailored for battery simulati
Hence, considerable improvement in efficiency can still be gai
by understanding the unique physics of the battery problem
choosing mathematical algorithms accordingly. For example, a
tem where the equations are decoupled from each other coul
easily solved using a sequentially iterative technique, whereas u
the Newton method would involve undue complexity~evaluating
Jacobians! while providing little, if any, improvement in computa
tion speed.

The purpose of this paper is twofold:~i! to gain insight into the
physics of the battery problem by studying the coupling between
various governing equations, and~ii ! to develop and apply a set o
advanced solution algorithms specifically tailored for strong
coupled equations governing battery behavior. To achieve
former, we use a Newton method code and investigate the effe
decoupling the equations from each other on the efficiency.
latter is achieved by using the Newton’s procedure to linearize
nonlinear system, wherein the initial conditions are generated u
the nonlinear Gauss-Seidel method. The resulting linear set of e
tions are then solved using an iterative procedure, the GMRES
routine, along with block Gauss-Seidel and multigrid preconditio
ing. This procedure for the solution of the problem, as opposed
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the direct solution used in Band~J!, provides considerable improve
ment in computation speed in this system, as the 2D nature o
problem results in a large sparse Jacobian matrix. The methods
lined here and the insight gained are expected to be useful in
development of efficient algorithms for all electrochemical syste
which have a large computational domain with multidimensio
effects, like fuel-cell systems.

Problem Formulation and Model Equations

Figure 1 schematizes the dual lithium ion insertion cell mode
in this study, consisting of a carbon negative electrode, a separ
and a positive manganese dioxide electrode. Both active mate
consisting of a large number of particles, assumed to be spheric
this study, are pasted on conductive grids forming a porous e
trode. The whole cell is filled with electrolyte, which is a solution
lithium salt in a nonaqueous solvent. The reactions during cha
discharge in the two electrodes can be represented as

Li y2xMn2O4 1 xLi1 1 xe2
——→
←——
charge

discharge

Li yMn2O4 @1#

Li xC6

——→
←——
charge

discharge

LiC6 1 xLi1 1 xe2 @2#

with the reaction occurring at the electrode/electrolyte interface
sustained due to lithium diffusion from/into the bulk of the so
phase. The present model is the same as the one described in
and thus is not elaborated here. Instead, we only provide the b
governing equations for species, charge, and energy balance, a
tails of the values of the parameters and their interdependence~e.g.,

Figure 1. Schematic of the Li-ion cell modeled in this study. The cell co
sists of a carbon negative and manganese oxide positive electrode with
salt electrolyte. The active material is assumed to consist of many sphe
particles.
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equilibrium potential as a function of concentration! are largely in-
dependent of solution procedure and the insight outlined here.
Ref. 3 for these parameters.

Mass balance.—Using the volume-averaging method to repr
sent the concentration of species, the mass balance in the sol
and solid phase can be represented using

]~«ece
Li !

]t
5 ¹ • ~Deff¹ce

Li ! 1
1 2 t1

0

F
JLi @3#

]~«ecs
Li !

]t
5 2

j Li

F
@4#

The reaction currentj Li is related to the surface overpotenti
through the Butler-Volmer equation, namely

JLi 5 aiojFexpS aaF

RT
h jD 2 expS 2

acF

RT
h jD G @5#

for both the electrodes, with the parameters being different in e
The exchange current density is a function of concentration
lithium in both the electrolyte and the solid phase and is given

i oj 5 k~ce
Li !aa~cs max

Li 2 c̄se
Li !aa~ c̄se

Li !ac @6#

wherek is determined from the initial exchange current density a
species concentration. In addition, the overpotential is related to
surface concentration through the equilibrium potential

h j 5 fs 2 fe 2 U j~ c̄se
Li ! @7#

The area-averaged concentration of lithium at the electro
electrolyte interface is determined by

Ds

l se
~ c̄se

Li 2 cs
Li ! 5 2

j Li

aF
@8#

Charge balance.—Charge conservation is expressed throu
Ohm’s law in the matrix and a modified Ohm’s law in solutio
respectively, given by

¹ • ~seff¹fs! 2 j Li 5 0 @9#

¹ • ~keff¹fe! 1 ¹ • ~kD
eff¹ ln ce

Li ! 1 j Li 5 0 @10#

where the diffusion conductivity,kD
eff , is given by

kD
eff 5 2

2RTk«ff

F
~1 2 t1

0 !S 1 1
d ln f 6

d ln ce
D @11#

Energy balance.—The energy balance is developed based on
local heat generation method. Here, in each control volume,
energy equation is expressed as

]~rCpT!

]t
5 ¹ • ~l¹T! 1 q @12#

where the heat generation rate is expressed as

q 5 j LiS fs 2 fe 2 U j 1 T
]U j

]T D 1 seff¹fs • ¹fs

1 keff¹fe • ¹fe 1 kD
eff¹ ln ce

Li
• ¹fe @13#

While the first term represents heat effects due to electrode r
tions, the other terms represent Joule heating.

Initial/boundary conditions.—Uniform initial concentrations are
assumed everywhere, leading to

ce
Li 5 ce,0

Li cs
Li 5 cs,0

Li T 5 To @14#

Li
al
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The computational domain is confined between two current col
tors with internal boundaries being represented by continuity of
various phases. As no reaction occurs at the current collector
faces, the boundary conditions are expressed as

]ce
Li

]n
5 0

]cs
Li

]n
5 0

]fe

]n
5 0 @15#

Current is applied at the top of the cell~through the tabs! and heat is
dissipated either through the tabs or from the sides as well. Th
are expressed as
At y 5 H

2seff
]fs

]y
5 I @16a#

2l
]T

]y
5 h~T 2 T`! if x , Lca or x . Lcc @16b#

At the other boundaries

]fs

]n
5 0 @17a#

2l
]T

]n
5 h~T 2 T`! @17b#

Discretization

The transient terms are discretized by a fully implicit sche
making use of the backward Euler method. For example, Eq.
expressed as

~«scs
Li !p 2 ~«scs

Li !p
0 5 2Dt

j Li

F
@18#

where the subscript p denotes the nodal point where the discre
tion is performed and the term with the superscript 0 represents
value at the previous time step.

In order to discretize the spatial terms, we choose the finite
ume formulation as detailed by Patankar.11 Here the computationa
domain is divided into a number of control volumes with each c
trol volume surrounding a grid point. Each differential equation
integrated over the control volume and the resulting first derivati
expressed using a two-point difference, assuming a linear profil
yield an algebraic equation, which depends on the values of
dependent variables at the nodal points adjacent to the point u
consideration. As the methodology involves integrating the gove
ing equation over the computational volume, conservation of
quantities is always ensured, even when a small number of n
points are used. In contrast, equations obtained using fin
difference and finite-element methods are truly conserved only w
the number of grid points is infinitely large. In addition, as interfac
are chosen at the faces of the control volume, continuity at
interfaces is ensured automatically.

Newton’s Method

The resulting set of coupled algebraic equations are solved u
the Newton’s method at each time step. As explored later in
paper, the equations for the potential in the matrix and the solu
are strongly coupled to each other, necessitating the use of thi
gorithm. Let us represent the set of algebraic equations in ve
notation as

f ~s! 5 0 @19#

where f :R4n → R4n, wheren is the number of vertices in the grid
Let

J~s! 5
] f

]s
@20#
-
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be the 4n 3 4n Jacobian matrix of the systemf (s).
Using a previous iteration value,sm, we first solve the linear

system

J~sm!hm 5 2f ~sm! @21#

to evaluatehm, from which the value ofs in the next iteration is
calculated by

sm11 5 sm 1 hm @22#

In other words, Eq. 21 defines the direction vectorh P R4n, called
the Newton direction, which is followed in Eq. 22 by a unit step
this direction in order to move from the current pointsm to the next
point sm11. The convergence of Newton method is local
quadratic12 and has been found to be particularly fast for the pres
model problem. Table I lists the maximum norm ofhm at each time
step and shows that the solution to Eq. 19 can be obtained in a
iterations using this method.

A critical step in the Newton iteration is the choice of the initi
guess. As choosing an initial guess at the beginning of the sim
tion for the global problem is difficult, we make use of the nonline
Gauss-Seidel method13 to solve the two potential equations~Eq. 9
and 10!, which is then used as the initial guess for the Newt
iteration. After the first time step, the previous converged solutio
seen to be sufficient for providing adequate initial guess for conv
gence of the solution at the current time step. However, it is
pected that in more complex profiles, like current-interrupt and pu
operation, where the solution at the previous time step is consi
ably different from the converged solution, the nonlinear Gau
Seidel initial guess solver would be crucially needed at each t
step.

Note that j Li is an implicit function ofce
Li , cs

Li , fe, and fs,
which can be seen by substituting Eq. 6 into 5, whereh j , c̄se

Li , and
cs

Li are all functions ofj Li. Therefore, the accuracy with whichj Li is
calculated in each Newton iteration would have a significant eff
on the convergence rate. In order to increase the accuracy of
calculation, the Newton method is also used to obtain the valu
j Li at each vertex, which is a~local! one-dimensional problem. Sinc
both aa and ac are less than 1, there are singular points for t
function expressed in Eq. 6~i.e., the Jacobian derivative has neg
tive exponents in the variable,c̄se

Li!. If the solution is near the singu
lar point, then Newton’s method is inefficient even with a go
initial guess. For example, solving the simple equationg(x) 5 Ax
2 0.1 5 0 by Newton’s method, starting from an initial guessx0

5 0.1, results in the value going less than zero in the next iterat
defined byx1 5 x0 2 g(x0)/g8(x0), where the prime denotes dif
ferentials. Keeping the iterations in the definition domain is an i
portant factor for the efficiency and robustness of Newton iterati
This difficulty is circumvented by choosing the initial guess close
the singular point.

Table I. The maximum norm of the residual with iteration num-
ber during the Newton iteration showing the speed of conver-
gence of the Newton’s method.

m ihmi`

1 1.0495364 3 1022

2 3.4196594 3 1024

3 7.4618763 3 1027

4 7.2593409 3 10210

5 5.1082980 3 10213

6 3.3319922 3 10216

7 2.1239212 3 10219
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GMRES Method

The use of the Newton method, as detailed above, results in
conversion of the nonlinear algebraic equations into a linear sys
with a large and sparse Jacobian matrix. Solution of such a sys
using direct solvers such as Gaussian elimination is inefficient.
example, the computation work in Band~J! is O(J2n), wheren is
the number of unknowns andJ the bandwidth of the matrix.6 For a
2D problem, such as the one in this paper,J is large~for example,
J ' m 5 An for an m 3 m grid!, suggesting that the bande
direct-solver would be inefficient. On the other hand, iterative te
niques provide considerable improvement in performance. For
ample, a preconditioned GMRES method would result in the co
putation beingO@nlog(n)#; a significant improvement for a larg
system.

However, because the matrix in Eq. 21 is not symmetric, tra
tional iterative methods like conjugate gradient~CG! and precondi-
tioned conjugate gradient~PCG! cannot be applied. Hence, w
choose GMRES, as introduced by Saad and Schultz,14 for solving
this large, sparse, linear system of equations. While CG applie
symmetric matrices, GMRES is a Krylov subspace approxima
method for general matrices. For simplicity, we rewrite Eq. 21 a

Jh 5 b @23#

Given an initial guess,h0 , we setr o 5 b 2 Jh, and define the
Krylov subspace

K~J, k, r o! 5 span~r o , Jro , ..., Jk21r o! @24#

the new approximationhk11 satisfies

ib 2 Jhk11i2 5 min
n P K~J, k, r 0!

ib 2 J~ho 1 n!i2 @25#

This method of applying the GMRES everyj steps, using the lates
iteration as the guess for the next GMRES cycle, termed GMRES~j!,
is popular, as good performance is achieved with low stor
requirements.6,14

Preconditioners for the GMRES Method

The efficiency of the GMRES method depends on many fac
and most notably the condition number of the matrixJ ~defined by
iJiiJ21i for a matrix normi i!. If J is close to identity, then the
convergence of GMRES will be very fast. Therefore, a precon
tioner,M, is used and the following equivalent system is solved

M 21Jh 5 M 21b @26#

using the GMRES method. A good preconditioner possesses
following properties:~i! for any vectorm, M 21m is obtained easily;
and ~ii ! M 21J, in some sense, is close to identity. Among the n
merous preconditioning techniques, we choose the block Ga
Seidel and multigrid techniques in this study.

Block Gauss-Seidel method.—Write J 5 D 2 L 2 U whereD
is a block diagonal matrix, andL and U are the strictly lower and
upper block triangular parts of (J 2 D), respectively. If we assume
that M 5 D 2 L, then M is also called the block Gauss-Seid
preconditioner. The efficiency of the block Gauss-Seidel preco
tioner varies depending on the arrangement of the unknowns. I
arrange the unknowns such that the nonzero parts and the rela
large elements are predominantly in the lower block triangular p
thenM 21J will be close to identity. This is ensured by manipulatin
the Jacobian matrix and expressing it as
e
,
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J 5 S Jcece
Jcefs

Jcefe
JceT

Jfsce
Jfsfs

Jfsfe
JfsT

Jfece
Jfefs

Jfefe
JfeT

JTce
JTfs

JTfe
JTT

D @27#

For a given vectorp 5 (p1 , p2 , p3 , p4) P R4n

j1 5 Jcece

21 p1 @28a#

j2 5 Jfsfs

21 ~p2 2 Jfscej1! @28b#

j3 5 Jfefe

21 ~p3 2 Jfece
j1 2 Jfefs

j2! @28c#

j4 5 JTT
21~p4 2 JTce

j1 2 JTfs
j2 2 JTfe

j3! @28d#

Thenj 5 (j1 , j2 , j3 , j4) 5 (D 2 L)21p is the desired vector.
We arrange the unknowns in the order ofce, fs, fe, and T,

expecting (D 2 L) to be close toJ, then (D 2 L) is a good pre-
conditioner. Table II shows the typical error estimates by our p
conditioned GMRES method compared to a GMRES method w
out preconditioner, where both the speed and the efficiency of
preconditioning are clear.

Multigrid method.—In order to perform the above-described pr
cedure, we need to obtainJcece

21 n and similar terms for a given vecto
n. This is equivalent to solving the system

Jcece
w 5 n @29#

We note that the matricesJcece
, Jfsfs

, Jfefe
, JTT are symmetric and

positive definite. Here we solve this system using the multig
method, although any iteration method would suffice@e.g., the tridi-
agonal matrix algorithm~TDMA !, PCG#.15 The multigrid method
has a very fast convergence speed which is independent of the
size, and the number of whole arithmetic operations needed is
O(n) @or O(n log n), more rigorously#, wheren is the number of
the unknowns. This technique has been particularly useful in solv
symmetric positive definite problems arising from discretizing ell
tic or parabolic partial differential equations.10,16-18In addition, we
choose TDMA, an efficient solver for problems that are essenti
one-dimensional, as the smoother in each level.15 While the multi-
grid method is more efficient than simple TDMA, especially for t
truly 2D problem, it is comparable for a nearly 1D problem. So it
relatively easy to get the vectorx 5 (D 2 L)21y for any given
vectory. As the multigrid method is applied in the preconditioner,
is not necessary to getJeeee

21 n and similar terms very accurately for

given vectorn P Rn. In our numerical experiments on the mod
problem only one or two iterations were needed to maintain
same convergence speed of the GMRES method. These sugges

Table II. Effect of preconditioning on the efficiency of the
GMRES method. A block Gauss-Seidel and multigrid precondi-
tioning was used.

Preconditioned GMRES GMRES without preconditione

Iteration Error Iteration Error

0 0.1000000 3 101 0 0.1000000 3 101

1 0.4536254 3 1021 2 0.3444273 3 100

2 0.3136039 3 1021 4 0.1956817 3 100

3 0.2530226 3 1022 8 0.9661916 3 1021

4 0.1815118 3 1023 16 0.5184772 3 1021

5 0.4202251 3 1025 32 0.2799835 3 1021

6 0.9042787 3 1027 55 0.1548874 3 1021

7 0.2034770 3 1028 110 0.8121148 3 1022
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our preconditioned GMRES method is very efficient. Notice that
use the GMRES method to get the Newton direction in the New
method; therefore, there is no need to use the GMRES metho
drive the residual to a very low degree. Experience suggests
decreasing the residual from 1 to 1023 to 1026 is sufficient.

In summary, the method presented in this paper involves
cretizing the PDEs using the finite volume method in order to
press them as a set of nonlinear algebraic equations, which are
solved simultaneously. This is achieved by first linearizing the eq
tions using Newton’s method, with a nonlinear Gauss-Seidel met
to obtain the initial guess, after which the linear system is sol
using the GMRES method, with a block Gauss-Seidel and multig
preconditioning coupled with TDMA as a smoother in each lev
The procedure results in very efficient solution of the coup
thermal-Li-ion code which involves gradients in two dimensions,
seen from Fig. 2, where the reaction current distribution across
cell is shown after 842 s during a 3 C discharge. The significan
change in the reaction current both across the cell and with
height suggests the need for efficient algorithms. The efficienc
the present algorithm is seen from the convergence central pro
ing unit ~CPU! times shown in Table III, where a 3 Cdischarge is
simulated using a time step of 2 s. Table III also shows that as
number of vertices increases, the CPU time increases linearly,i.e.,
O(n), as is theoretically expected.10,16-18This points to the optimal
nature of the method, which along with its scalable nature make
particularly amenable for parallel computing.

In addition to providing efficient convergence in the order
minutes for reasonable grid sizes, the method is also seen to
verge at large time steps, where the convergence speeds are l
This is seen clearly in Fig. 3, where the CPU time, during o
Newton iteration, is shown with the time step enlarged. The sim
lations were performed for different time steps for a 3 Cdischarge
using a 453 32 grid. One can see that the CPU time increa

Figure 2. Reaction current contours across the cell indicating the 2D na
of the problem. The figure was generated at 842s during a 3 Cdischarge.

Table III. CPU time with grid size for the Li-ion code generated
during a 3 C discharge with a time step of 2 s.

2D grid size CPU time~min!

45 3 45 10
90 3 62 45

178 3 122 190
354 3 242 800
n
to
at

-
-
en
-
d

e

ll
f
s-

e

it

n-
er.

-

s

much more slowly than the time step, suggesting that the time
can be increased even further, thereby improving converge
speed, as long as accuracy is maintained.

In order to study the effect of increasing the time step on
accuracy, simulations were conducted by increasing the time
from 2 s~where the solution time is approximately 10 min! to 120 s
~where the solution time is approximately 1 min!, and the cell volt-
age and temperature are plotted in Fig. 4 and 5, respectively.
curves were generated during 3 C discharge using a grid siz
45 3 32. The negligible difference between the curves generate
the two time steps assert to the usefulness of utilizing this meth
ology for battery simulation. The 10-fold increase in the conv
gence speed makes this an attractive feature of the presently d
oped methodology.

Partial Newton’s Method

The numerical procedures illustrated entail generating the J
bians of the matrix during the Newton iteration, which was p
formed analytically in this study. This task can, however, be
tremely time consuming under some conditions. For example,

e
Figure 3. CPU timevs. time step for the Li-ion code described here for a
C discharge with 453 32 grid.

Figure 4. Cell potential during 3 C discharge for simulation conducted usin
a time step of 2 and 120 s with a grid size of 453 32.
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first two terms in Eq. 10 are difficult to differentiate as the condu
tivity of the solution changes with concentration. A similar proble
is encountered when differentiating the diffusion term in Eq. 3,
the diffusion coefficient is dependent on the concentration,
hence changes across the cell. It would, therefore, be advantag
to simplify the process by neglecting these differentials and utiliz
the resultant inexact Jacobian in the Newton iteration. While this
the disadvantage of changing the iteration path with a potentia
slowing it down, it simplifies the solution of the Jacobians cons
erably because of the larger number of zeros in the matrix. T
cases are thus devised and investigated, namely
Case A: The differentiation of the term¹ • (kD

eff¹ ln ce
Li) in Eq. 8 is

not included in the Jacobian.
Case B: In addition, the gradient ofkeff in the term¹ • (keff¹fe) in
Eq. 8 and the gradient ofDeff in the term¹ • (Deff¹ce

Li) in Eq. 3 are
not included in the Jacobian.

Figure 6 plots the CPU timevs. the simulation time during dis-
charge, obtained from the full Newton method and the two ca
illustrated, respectively. The similarity for the three cases is cle
seen. Detailed analysis shows that both the decrease in perform

Figure 5. Cell temperature evolution during 3 C discharge of the cell using
time steps of 2 and 120 s with a grid size of 453 32.

Figure 6. CPU timevs.simulation time for the Li-ion code using the com
plete and the partial Jacobians. The plot was generated during a 3 C dis-
charge using a grid size of 453 32.
d
us

s
r

o

s
y
ce

due to the inexact Jacobian and the increase due to the incre
number of zeros have a negligible effect, leading to the overall n
ligible effect shown in Fig. 6. Therefore, these terms can be
glected when generating the Jacobian matrix for battery simulat
thereby making this time-consuming process considerably easie

Coupling of Governing Equations

While use of advanced solution algorithms are essential to e
ciently solve a system of equations, a compromise between c
plexity and efficiency can be achieved only by understanding
physics of the system. In other words, knowledge of the nature
the equations would provide us with guidelines for the choice of
solver. One important criterion is the coupling between the vari
equations solved, namely, the concentration~Eq. 3!, potential~Eq. 9
and 10!, and temperature~Eq. 12! equations. If the equations wer
considerably decoupled from each other, the iterative proced
~like Picard’s iteration! would suffice, while completely coupled
equations would need to be solved simultaneously~using the New-
ton method!. While the former offers simplicity~e.g., no need for
Jacobians!, its efficiency decreases as the coupling between
equations becomes more significant. The latter, while efficie
would impose undue complexity when the system is simple. In or
to gauge the level of the coupling between the various equation
battery modeling, four test simulations were conducted, namely
Case 1: All the equations are coupled~full Newton method!.
Case 2: The temperature equation is separated, while the other
solved simultaneously.
Case 3: The concentration equation is also separated, along wit
temperature equation.
Case 4: All four are separated~equivalent of Picard’s method!.

Figure 7 shows the CPU time during the simulation for three
the cases. It can be seen that while case 2 and 3 result in a s
increase in the CPU time, the change is negligible, suggesting
the temperature and concentration equations are reasonably d
pled from the potential equations. When the two potential equati
are also decoupled~case 4! the simulation time changes dramatical
with as much as 75 times decrease in performance. Clearly the
potential equations are the major cause for the inefficiency of
quential iteration techniques and require simultaneous solut
These two equations are dependent on each other through the
tion current, where the overpotential appears in the exponen
term. Hence, small changes in the potential can lead to large cha
in the current, especially when the exchange current density is l
~e.g., the Zn electrode in alkaline cells!. Hence, the possibility of the
solution changing significantly during each iteration step is cons
erable, hence making it more difficult. This coupling of the tw
potential equations with the relatively decoupled nature of the te
perature and concentration equations has been seen in other b
systems also. It appears that an effective way of taking advantag
the ease of iteration techniques while combining the robustnes
simultaneous solvers is to solve the potential equations simu
neously while solving the rest sequentially. This technique offers
most potential for the solution of systems that have similar phys
chemical behavior as that shown in this paper.

Conclusion

In this paper, we illustrate a set of numerical techniques that h
been found to be most efficient to solve the equations that desc
battery systems. We illustrate these techniques using a 2D cou
thermal electrochemical first-principles model of a Li-ion cell. T
methods developed are based on Newton linearization of nonli
algebraic equations along with an iterative solver, GMRES, inst
of a direct solver~Gauss elimination! used in Band~J! algorithm.
This is expected to be critical in such large sparse systems w
direct solvers are very inefficient. The Newton iteration method
also made more robust by using a nonlinear Gauss-Seidel meth
provide a good initial guess. In addition, we explore the robustn
of the GMRES subroutine by using the block Gauss-Seidel and m
tigrid preconditions, where significant improvements in performan



are

by
on

u
atu
. It
om
nt

ue

rip
gy
co-
d-

S5

tio

s,
Pen-

d

s
748,

ed

s

,

,

k
ork

s
, t

qua

Journal of The Electrochemical Society, 149 ~10! A1342-A1348~2002!A1348
were seen. In addition to identifying the set of algorithms that
most efficient for the solution of such systems~batteries and fuel
cells!, we also provide insight into the physics of the equations
studying their coupling. It is seen that the two potential equati
are strongly coupled with each other and have to be solved sim
taneously. On the other hand, the concentration and temper
equations are relatively decoupled and can be solved separately
proposed that an optimum algorithm for such systems, which c
bines robustness with ease of usage, would be to solve the pote
equations simultaneously and couple this with the rest in a seq
tial iteration procedure.
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List of Symbols

a interfacial area per unit volume, cm2/cm3

cs
Li concentration of lithium in the solid phase, mol/cm3

cs max
Li maximum concentration in solid phase, M

c̄se
Li concentration of lithium at the electrode/electrolyte interface, M

ce
Li concentration of lithium in the electrolyte, mol/cm3

Cp specific heat capacity, J/kg K

Deff effective diffusion coefficient in the liquid phase, cm2/s
Ds diffusion coefficient in the solid phase, cm2/s
f 6 mean molar activity coefficient of the electrolyte, mol/cm3

F Faraday’s constant, C/equiv
h equivalent convective heat-transfer coefficient, W/cm2 K

i 0j exchange current density of an electrode reaction j, A/cm2

I input current density, A/cm2

j Li pore wall flux of lithium ion, mol/cm2 s
l se diffusion length~Rs/5 for spherical particles!, cm
q volumetric heat generation rate, J/cm3 s
R universal gas constant, J/mol K

Rs radius of the spherical particle, cm
t1
0 transference number of the Li1 with respect to the solvent velocity
t time, s
T absolute temperature of the cell system, K

U j open-circuit potential data for the insertion materials, V
x coordinate along the cell width, cm
y coordinate along the cell height, cm

Greek

aa , ac transfer coefficients
«e porosity
h j local surface overpotential of reaction j, V

keff effective conductivity in the liquid phase,V21 cm21

kD
eff diffusion conductivity,V21 cm21

l thermal conductivity, W/cm K
r density, g/cm3

seff effective conductivity in the matrix phase,V21 cm21

fs matrix phase potential, V
fe solution phase potential, V

Subscript

0 initial condition
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