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ABSTRACT

The micro-macroscopic coupled model developed in a companion paper is applied to
predict the discharge and charge behaviors of nickel-cadmium (Ni-Cd) and nickel-metal
hydride (Ni-MH) cells. The model integrates important microscopic phenomena such as
proton or hydrogen diffusion and conduction of electrons in active materials into the
macroscopic calculations of species and charge transfer. Simulation results for a full Ni-Cd
cell and a single MH electrode are presented and validated against the pseudo two-
dimensional numerical model in the literature. In good agreement with the previous results,
the present family of models are computationally more efficient and are particularly suitable
for simulations of complex test conditions, such as the dynamic stress test (DST) and pulse
charging for electric vehicles. In addition, a mathematical model for full Ni-MH cells is
presented and sample simulations are performed for discharge and recharge with oxygen
generation and recombination taken into account. These gas reactions represent an
important mechanism for battery overcharge in the electric vehicle application.
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Introduction

In a companion paper,1 a micro-macroscopic coupled model to simulate batteries and fuel
cells was described. The model is capable of incorporating interfacial non-equilibrium
effects present in advanced battery systems, and also is a single-domain formulation as all
the governing equations are valid in both electrode and separator regions. The latter feature
can greatly facilitate numerical implementation and simulation of complete cells, including
the negative electrode, separator, and positive electrode, thereby providing an efficient
simulation tool. The objective of this paper is to demonstrate various unique features and
capabilities of the new model through application to two important battery systems: nickel-
cadmium and nickel-metal hydride.

The nickel-cadmium (Ni-Cd) cell is considered to be one of the near-term power sources
for electric vehicles, while the nickel-metal hydride (Ni-MH) battery is expected to replace
the Ni-Cd battery as a promising electric vehicle battery due to its higher energy density,
higher power density, longer cycle life, and absence of poisonous heavy metals.2

Substantial efforts are currently focused on the development of Ni-MH batteries and the
improvement of Ni-Cd batteries. A powerful mathematical model can help to understand
the complicated discharge and charge behaviors of these intercalative batteries, and thus
plays an important role in battery design, scale-up, and optimization.

Several mathematical models have been developed to predict the performance of a single
nickel electrode3, 4 as well as a full Ni-Cd cell.5-8 Extensive reviews were provided therein
and thus are not repeated here. Most importantly, it was found that the proton diffusion and
ohmic drop occurring across the active material layer on a micro-scale control the cell
performance and active material utilization, whereas the species transport in the electrolyte
on the cell scale was found to have little effect on battery behavior. To take these
microscopic phenomena into account, a modified pseudo two-dimensional model based on
the macro-homogeneous model of Newman9 was proposed by De Vidts and White.7 In
this model, one dimension was defined across the cell (i.e., the 'macroscopic' dimension),
while the other dimension was defined across the active material layer (i.e., the
'microscopic' dimension). Fick's law of diffusion and Ohm's law of electronic conduction
were applied along the microscopic coordinate to account for proton diffusion and ohmic
drop. A variable electronic conductivity of the nickel electrode was considered because
nickel hydroxide is an electrical insulator in the reduced state and a conductor in the
oxidized state. The microscopic equations were then coupled to the macroscopic governing
equations for species and charge transfer across the cell, and together they were
numerically solved simultaneously. While such a pseudo two-dimensional approach is
capable of incorporating microscopic phenomena into a macroscopic model, it is
computationally demanding and appears difficult to apply to practical situations where
complex discharge or charge modes are involved as in electric vehicle applications.

Efforts were made to find a more computationally efficient way of accounting for proton
diffusion and conduction of electrons on the scale of active material particles.4, 8 In these
efforts, the microscopic diffusion equation was solved by Laplace transforms based on the
simplified planar treatment for the solid phase, and an integral expression of the potential
was obtained from the conservation equation of charge inside the nickel active material.4

Both local solutions are in semi-analytical forms and require numerical evaluation of
integrals. These solutions were later integrated into a macro-homogeneous model for
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species and charge transfer across the cell to simulate the behavior of a full Ni-Cd battery.8

It was reported that a stability problem may arise from such a hybridization of numerical
integration and differentiation due to the synchronization of the time step required for the
microscopic solutions with that used in the numerical simulation of macroscopic species
and charge conservation equations.

While there has been extensive research on the modeling of Ni-Cd cells, a complete
mathematical model for discharge and recharge of Ni-MH cells is still absent.2 Limited
modeling attempts have been made to simulate the discharge process of a single metal
hydride electrode10-13 and a Ni-MH cell.14 Similar to the nickel electrode, hydrogen
diffusion in the metal hydride particles is typically a rate-limiting mechanism. Viitanen10

first developed a mathematical model to describe the polarization behavior of the MH
electrode in the absence of macroscopic ohmic losses and species concentration gradients,
and numerically simulate the electrode behavior under various conditions. Following their
work on the nickel electrode, Jain and Weidner11 used Laplace transforms to obtain an
infinite series solution for the hydrogen concentration at the particle surface in an MH
electrode and simulated the discharge process under the assumption that there are neither
macroscopic ohmic losses nor concentration non-uniformities. Their results indicated that
the mass diffusion coefficient of hydrogen in MH particles and the particle size are critical
parameters in affecting the discharge characteristics of the MH electrode. Closely patterning
Jain and Weidner's work on Ni-Cd cells, De Vidts et al.12 presented a pseudo two-
dimensional numerical model for the discharge of a single MH electrode. In this work,
spherical MH particles were assumed, and both macroscopic species and charge transport
and microscopic hydrogen diffusion in MH particles were included. It was found that
diffusion of atomic hydrogen from the bulk of MH particles to the particle surface becomes
more critical as the discharge rate and/or particle size increase.

Most recently, Heikonen et al.13 presented a mathematical model for the discharge of a
MH electrode made up of irregularly shaped particles. This work is important in that actual
microstructures of the MH electrode are always complex and irregular whereas a sphere has
the least surface area for a given volume. An important part of this analysis was defining an
equivalent radius of diffusion as the solid volume fraction (εs) divided by the specific
surface area (ase) in the case of non-spherical particles. It is clear from the discussion in
Part 11 that such a selection of the equivalent radius is an accurate representation of the
length scale of electrode microstructures and also is based on better measurable geometrical
quantities (i.e., εs and ase).

At the time this article was being submitted for publication, the authors became aware of a
most recent attempt by Paxton and Newman14 to model Ni-MH batteries. They argued that
proton diffusion in the nickel electrode is not rate-limiting in the parametric range they
examined and therefore not taken into account in their model.

In this paper, we apply the micro-macroscopic model developed in Part 1 to Ni-Cd and
Ni-MH cells in order to demonstrate capabilities of the present modeling approach, as well
as to quantify the utility of the simple constitutive relations developed in Part 1.
Comparisons to the available data on the discharge of a Ni-Cd cell7 and a single MH
electrode12 will be made. Finally, a full Ni-MH cell model accounting for both proton
diffusion in the nickel electrode and hygrogen diffusion in the MH electrode is presented
for the first time, and sample simulations are performed to study the discharge behavior and
associated limiting mechanisms, as well as the recharge behavior in the presence of oxygen
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evolution and recombination. It should be noted that modeling a full Ni-MH cell, with both
proton diffusion in the nickel electrode and hydrogen diffusion in the MH electrode taken
into account,  is computationally a more challenging task than a Ni-Cd cell. The efficiency
of the present Ni-Cd and Ni-MH models was further demonstrated in a recent application to
simulate a series of complex test regimes, such as the dynamic stress test and federal urban
driving schedule designed to evaluate electric vehicle batteries.15

Micro-Macroscopic Modeling

A Ni-Cd or Ni-MH cell is composed of three regions: a negative electrode, a positive
electrode, and a separator in-between acting as an electronic insulator, as schematically
shown in Fig. 1. Porous nickel oxyhydroxide is used as the active material for the positive
electrode in both Ni-Cd and Ni-MH cells, while the negative electrode is made of either
cadmium powders in the Ni-Cd cell or metal hydride powders in the Ni-MH cell. The
electrolyte in both cells commonly is a concentrated KOH aqueous solution.
Electrochemical reactions taking place at the electrode/electrolyte interface inside various
electrodes during discharge and charge are given as

Positive electrode

NiOOH + H2O + e- 
    charge 

discharge
← 
 →  Ni(OH)2 + OH- [1]

with the side reaction

1
2 O2 + H2O + 2e- 

    charge 

discharge
← 
 →  2 OH- [2]

Negative electrode

Cd + 2 OH- 
    charge 

discharge
← 
 →  Cd(OH)2 + 2e- [3a]

or

MH + OH- 
    charge 

discharge
← 
 →  M + H2O + 2e- [3b]

with the same side reaction

2 OH- 
    charge 

discharge
← 
 →  

1
2 O2 + H2O + 2e- [4]

Assumptions.—The following assumptions are made for the model development and for
the purpose to rigorously compare with the previous work:7,12

(i) Each electrode is a two-phase system consisting of the solid matrix and liquid
electrolyte, as shown in Fig. 1. Oxygen evolving during electrochemical reactions is
dissolved in the liquid phase and treated as a neutral species with an apparent diffusion
coefficient.5,7,12 This assumption may be unrealistic in some situations but is necessary for
comparisons of the present model with previous results.
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(ii) The nickel electrode is modeled to consist of composite cylindrical needles with a
substrate inside (see Fig. 1). The porosity variation is neglected.
(iii) The MH electrode is modeled to consist of spherical particles with uniform size and
constant porosity;
(iv) The convection effect is neglected, leaving the species transport by diffusion and
migration only.
(v) Interfacial chemical and electrical equilibrium exists in the electrolyte phase due to large

values of the mass diffusivity and ionic conductivity in the electrolyte, i.e. 〈ce〉
e=c−es and

〈φe〉
e=φ−es.

(vi) Thermal effects are discounted.

With the above assumptions, one-dimensional forms of the micro-macroscopic model can
be extracted from the general framework presented in Part 1. In the remainder of this paper,
the averaging symbols are dropped for convenience, namely 〈Φk〉

k =Φk, whereas an
interfacial quantity is still denoted by an overbar so as to distinguish it from its volume-
averaged counterpart. In addition, a superscript is added to c to indicate the concentration of

a specific species, e.g., cH
s , to denote the hydrogen or proton concentration in the solid

phase. In the case where a species exists only in one phase, the corresponding subscript
will be dropped for simplicity, i.e., cH.

Governing equations.—Reaction rates for the various charge-transfer reactions involved
in a Ni-Cd or Ni-MH cell can be derived from the general Butler-Volmer equation with
respect to a specified reference state. Following De Vidts and White7 and De Vidts et al.,12

we have

i−n1 = io1,ref
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where c's with various superscripts stand for their concentrations and η j is the surface
overpotential of reaction j, i.e.

η j  = φ−se -  φe -  Uj,ref j=1, 2, 3, and 4 [9]

Here, the interfacial electrical equilibrium condition (i.e. φ−es =φe) has been used and Uj,ref
is the open-circuit potential at reference conditions for reaction j.
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Species conservation equations.—There are two species that participate in charge-transfer
reactions present in the liquid electrolyte under consideration: an ionic species OH- and a
neutral species O2. Under the above assumptions, the convection term drops off and the
interface velocity is equal to zero for a constant porosity. Applying the general volume-
averaged conservation equation of species (i.e., Eq. 41 in Part 11) and making use of the
interfacial balance condition (i.e., Eq. 49 in Part 11) to the two species, respectively, yields

∂(εecOH)
∂t  = ∇⋅ (DOH

eff ∇ cOH) + 
to- - 1

F   jOH [10]

∂(εec
O2)

∂t   = ∇⋅ (DO2
eff∇ cO2) + 

1
4F jO2 [11]

Here, to-  is the transference number of the OH- with respect to the velocity of the solvent

and DOH
eff  is an effective diffusion coefficient including the effect of tortuosity, i.e.

DOH
eff  = DOHε1.5

e
[12]

where DOH
 is the mass diffusion coefficient of species OH- in the electrolyte KOH.

Likewise, the effective mass diffusivity of oxygen in Eq. 11 follows the same Bruggeman
relation as given in Eq. 12.

The source term in Eq. 10 is proportional to jOH, the total current from all electrochemical

reactions that generate or consume the species OH- at the electrode/electrolyte interface,
namely

jOH = ase∑
j

i−nj = 

 

 aNi( i−n1 +  i−n2) in the nickel electrode

0 in the separator

(aCd or aMH)( i−n3 +  i−n4) in the Cd or MH electrode

[13]

Similarly, jO2
 
 is the transfer current associated with the generation or consumption of

oxygen, i.e.

jO2 = 

 

 aNi i

−
n2 in the nickel electrode

0 in the separator

(aCd or aMH) i−n4 in the Cd or MH electrode

[14]

In addition, one species, either proton or atomic hydrogen, is present in the solid phase
of the nickel and MH electrodes, respectively. This species is represented by a uniform
symbol, H, in the present work. Similarly to for species OH- and O2, we have

∂(εsc
H)

∂t  = ∇⋅( DH
eff∇ cH) + j

H

F [15]

where

jH = 

 

 aNi i

−
n1 in the nickel electrode

0 in the separator

aMH i−n3 in the MH electrode

[16]

The interfacial balance of H in either nickel or MH electrode becomes
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DH

lse
 (c−H

se-  cH) =  jH
aseF

[17]

where c−H
se is the proton or hydrogen concentration at the electrode/electrolyte interface and

lse is the diffusion length, the expressions of which have been derived as follows1

lse = 
rs + ro

4  -  
rsro

3(rs - ro) + 
2r3o

3(r2s - r2
o)

 [18]

for the cylindrical morphology of the nickel electrode and

l  se = 
rs
5 [19]

for the spherical morphology of the MH electrode.
 Although we have formally included species diffusion on a macroscopic scale in Eq. 15
(i.e., the first term on the right-hand side), in practice this term may be negligible because
the microscopic species diffusion length is much smaller than the characteristic length for
diffusion into or out of an averaging volume. Mathematically, this can be shown by
comparing the magnitudes of the macroscopic diffusion term and interfacial transfer term
due to diffusion as expressed by Eq. 17. Noting that the specific interfacial area ase and the
diffusion length lse are proportional to 1/rs and rs, respectively, where rs is a representative
microscopic length, the ratio of the magnitudes of the two terms is

∇⋅( DH
eff∇ cH)

jH/F
 = 

∇⋅( DH
eff∇ cH)

aseD
H(c−H

se-  cH)/lse

 ≈ 
DH

eff∆cH/L2
e

DH∆cH/r2s
 ≈ 

r2
s

L2
e

 « 1 [20]

where Le is a macroscopic length (e.g., the electrode thickness) and ∆cH stands for a
suitable concentration scale. Hence, Eq. 15  can be further simplified to

∂(εsc
H)

∂t  = j
H

F [21]

Charge conservation equations.—Application of the general charge conservation equation
derived in Part 1 to the solution phase under consideration yields1

∇⋅ (κeff∇φ e) + ∇⋅ (κeff
D ∇ ln cOH) + jOH =0 [22]

This equation can be used to determine the electrical potential in the electrolyte phase, φe.

Here, the effective ionic conductivity is given by κeff=ε1.5
e

κ following Eq. 12, while κeff
D  is

the diffusional conductivity given by

κeff
D  = 

2RTκeff

F  
 


 
1  +  

dln f±
dln cOH  

 


 
1 -  to-  +  

cOH

2cH2O
[23]

The transfer current in Eq. 22, jOH, is the same as given in Eq. 13.
For the solid phase, the charge conservation equation can be written as1

∇⋅ (σeff∇φ s) -  jOH + asb 
φ−sb -  φs

Rsb
 = 0 [24]

where the second term represents the transfer current generated at the electrode/electrolyte
interface, and the third term stands for the current conducted into a substrate, with asb and

φ−sb being the specific area and potential at the active material/substrate interface. This term
is absent on the cadmium and MH electrodes and is relevant only in the nickel electrode
where a substrate is embedded in the solid material to improve the electronic conductivity.
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In this case, the substrate potential φ−sb usually remains constant due to a large value of
electronic conductivity.

In addition to the two volume-averaged conservation equations for charge, the interfacial
charge balance at the electrode/electrolyte interface is also needed and now becomes1

φ−se -  φs
Rse

 = -  
jOH

ase
[25]

where φ−se is the solid potential at the interface and is needed to calculate the interfacial
overpotential η. As noted earlier, the electric resistances appearing in Eqs. 24 and 25 are
directly proportional to the particle size of the active material and inversely proportional to
the electronic conductivity1 (also see below). For both cadmium and MH electrodes, the
respective electronic conductivities are sufficiently high that the electric resistance Rse
approaches zero, and hence Eq. 25 essentially reduces to

φ−se = φs [26]
That is, electrical equilibrium exists in cadmium and MH electrodes. In contrast, the nickel
electrode in the semiconducting state has a relatively low electronic conductivity so that
electrical equilibrium does not hold true. In this case, the microscopic electrical resistances
derived by Wang et al.1 can be used

Rsb = 
ro
12 

 


 
rs -  ro

rs + ro
 
 


 
5rs + 3ro

σoro
 + 

3rs + ro
σsrs

[27]

and

Rse = 
rs
12 

 


 
rs -  ro

rs + ro
 
 


 
rs + 3ro

σoro
 + 

3rs + 5ro
σsrs

[28]

where σo and σs denote the conductivities of the nickel active materials at the
electrode/substrate and electrode/electrolyte interfaces, respectively.

The effective conductivity of the solid phase in Eq. 24, σeff, is related to the conductivity
of the active materials, σ, by 7,12

σeff = εsσ                            s = Ni or MH [29]
where s denotes the nickel and MH electrodes, respectively, and

σeff = σ
 




 


εCd -  εCd

'
min

εCd
'
max -  εCd

'
min

β
[30]

for the cadmium electrode. The conductivity of the nickel active material is a strong
function of local state of charge,7 i.e.

σ = 0.1185exp
 


 
- 8.459

 



 

cH

cH
max

4
[31]

while the conductivities of the pure cadmium and MH alloy are assumed to be constant at
the values of 1.4706×105 S/cm and 41505.1 S/cm, respectively.7,12  The effective
conductivity of either MH or cadmium electrode is thus sufficiently high, leading to a
virtually uniform potential distribution across the electrode.

The term β in Eq. 30 is a tortuosity factor associated with the porous structure of the
cadmium electrode. A value of 0.5 for β is taken from Ref. 12. The porosity of the
cadmium electrode takes the maximum and minimum values at the full charge and
discharge, respectively. In between, the porosity is calculated from the porosity variation
equation to be shown below to account for the structural change.
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Porosity variation equation.—While the porosity is assumed constant on the nickel and
MH electrodes, the porosity of the cadmium electrode varies as a result of the charge-
transfer reaction  during cell operation as described by Eq. 26 in Part 1,1 namely

∂εs
∂t  = 

1
2F 

 


 
MWCd

ρCd
 - MWCd(OH)2

ρCd(OH)2
 aCdi−n3 [32]

with aCd being the specific interfacial area and varing with the porosity of the electrode

 aCd = aCd,max

 




 


εCd-  εCd

'
min

εCd
'
max -  εCd

'
min

τ
[33]

where aCd,max is the specific interfacial area in the cadmium electrode at full charge and τ is
an exponent to account for surface passivation and is equal to unity in this study.

In summary, a total of five governing equations, Eqs. 10, 11, 15 or 21 through 24, are
developed to solve for the five unknowns: cOH, cO2, cH, φe, and φs. In addition, two
interfacial balances, Eqs. 17 and 25, are provided to determine two interfacial quantities:

c−H
se and φ

_
se.

Initial /boundary conditions.—Uniform initial conditions are assumed as

cOH = cOH
o , cO2 = cO2

o , cH = cH
o [34]

Boundary conditions at the positive electrode/current collector boundary (x=L) include
∂cOH

∂x  = 0, 
∂cO2

∂x  = 0, 
∂cH

∂x  = 0, 
∂φe
∂x  = 0, and φs = φ

_
sb [35]

At the negative electrode (x=0), there is no flux of species and all current goes through the
solid phase

∂cOH

∂x  = 0, 
∂cO2

∂x  = 0,  
∂cH

∂x  = 0, 
∂φe
∂x  = 0, and - σeff 

∂φs
∂x  = I [36]

For a single MH electrode problem without oxygen generation and recombination as
studied by De Vidts et al.,12 boundary conditions at the interface between the MH electrode
and electrolyte reservoir are needed and given by

cOH = cOH
o ,  

∂cH

∂x  = 0, - κeff∂φe
∂x  -  κeff

D
∂ln cOH

∂x  = I, and 
∂φs
∂x  = 0  at x = Le [37]

where Le is the thickness of the  MH electrode.

Numerical Procedures

The equations in the micro-macroscopic model presented above were discretized by a finite
volume method15 and solved using a general-purpose computational fluid dynamics (CFD)
code. A key feature of the numerical procedures and the corresponding code is that all
governing equations are cast into the following general form

∂(εΦ)
∂t  = ∇⋅(Γ∇Φ ) + S [38]

where Φ  represents a general conservable quantity, Γ  is a diffusion coefficient pertinent to
Φ, and S is a source term. As an example, compare Eq. 38 with the electrolyte
concentration equation, Eq. 10; Apparently, Φ  stands for the electrolyte concentration,
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cOH, Γ=DOH
eff  is the effective mass diffusivity, and S denotes the species generation term in

Eq. 10. For the two charge conservation equations, the transient term in Eq. 38 vanishes
due to the neglect of double-layer charging.

Often, the general source term S in Eq. 38 is a non-linear function of the dependent
variable Φ itself. For example, in the case of the charge conservation equations for both
solid and solution phases, S represents the transfer current which depends on the electrical
potentials φs and φe in the form of Butler-Volmer equation. In such situations, it is
desirable to linearize the source term using the Taylor series expansion for the  iteration
process, i.e.

S = S(Φo) + 
∂S
∂Φ (Φ - Φo) = SC + SPΦ [39]

where Φo is the value of Φ in the previous iteration, while the constant part, SC, and the
linear coefficient, SP, are given by

SC = [S(Φo) - 
∂S
∂Φ Φo]  and  SP = 

∂S
∂Φ [40]

Note that SP must not be positive in this treatment; otherwise, a convergent solution is
impossible.16

The one-dimensional rectangular physical domain was divided by either uniform or non-
uniform grid lines. Stringent numerical tests were performed in each case to ensure that the
solutions are independent of the grid size and time step. It was found that the typical
number of grid lines across the cell width is about 60 (i.e., the size of a finite volume is
about 1/20 of an electrode thickness) and the time step normally ranges from 10 seconds to
20 seconds, except near the end of discharge when smaller time steps are required. The
equations were solved as a simultaneous set, and convergence was considered to be
reached when the relative error in each field between two consecutive iterations was less
than 10-5. A typical transient simulation for one dimensional problems required about 10
seconds of CPU time on an HP B160L workstation (160 MHz CPU, SPECfp95 7.39).
Such CPU time is quite manageable and permits a full simulation of the dynamic behavior
of electric vehicle batteries involving hundreds of discharge and recharge cycles.15

Results and Discussion

In this section, we benchmark the present micro-macroscopic model against the 'exact'
solutions developed by De Vidts and White7 and De Vidts et al.12 using the pseudo two-
dimensional approach for a Ni-Cd cell and a single MH electrode. Subsequently, we
present new results for the discharge and charge of a Ni-MH cell with oxygen evolution
and recombination taken into account.

For comparison, we used the same parameters as in references [7] and [12] in the
simulations for the discharge of the Ni-Cd cell and the single MH electrode; see Table I.
There were, however, a few changes in the parameters used for the full Ni-MH cell, as
noted in parentheses in Table 1. These include: (1) the maximum theoretical charge per unit
of projected electrode area of the metal hydride electrode, Qo,MH; (2) the initial, maximum,

and reference concentrations of atomic hydrogen in metal hydride particles, cH
o, cH

max, and

cH
ref; and (3) the initial and reference concentrations of the electrolyte, cOH

o  and cOH
ref . These
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values are modified to match the theoretically maximum electrode capacity of the MH
electrode with that of the nickel electrode. In other words, the capacity ratio of the two
electrodes in the simulated Ni-MH cell is equal to unity. The properties of the electrolyte
KOH, including DOH, κ , and cOH/cH2O, are expressed as functions of the electrolyte
concentration, cOH, as shown in Table II.

Discharge curves to be presented are plotted against the depth of discharge of an electrode
or a cell (DOD), which is defined as

DOD = 
| I  | t
 Qo  

[41]

where t is the time elapsed from the beginning of discharge and Qo is the maximum
capacity per unit of projected electrode area of an electrode. Both Ni-Cd and Ni-MH cells
are generally designed to be positive limited to avoid hydrogen evolution on the negative
electrode at nearly full charge and overcharge. Thus, Qo used to define the depth of
discharge of a cell should be equal to the capacity of the nickel electrode. The predicted cell
potential is defined as

Cell potential = φs(x=L) -  φs(x=0) [42]
For a single MH electrode, the electrode potential shown in the following figures is

defined as the difference between the potentials at the electrode/current collector boundary
and at the electrode/separator interface

Electrode potential = φe(x= Le) -  φs(x=0) [43]
The potential drop in the electrolyte across the electrode is defined as

Potential drop in the electrolyte = φe(x=0) -  φe(x=Le) [44]

Discharge of a Ni-Cd cell.—Figure 2 shows the predicted Ni-Cd cell potential versus the
depth of discharge at two different discharge rates in comparison with De Vidts and
White's results.7 Generally, it is seen that the cell potential decreases gradually over a large
range of DOD and then quickly drops to the cut-off voltage near the end of discharge. The
end of discharge is caused by an abrupt increase in the proton concentration at the
electrode/electrolyte interface and hence the substantial increase in the ohmic resistance
inside the nickel active layer. Recall that the nickel electrode behaves like an insulator when
the proton concentration reaches the maximum. Compared to the more 'exact' solution of
De Vidts and White7 based on a pseudo two-dimensional numerical approach, the present
model yields very similar discharge curves with a discrepancy of ca. 1% in the discharge
time. Note that the only difference between the present micro-macroscopic model and De
Vidts and White's pseudo numerical model lies in the mathematical treatment of the
microscopic phenomena, i.e., the former uses a diffusion length to describe solid state
diffusion and an electric resistance to account for the microscopic ohmic drop inside the
active material, whereas the latter approach uses exact differential equations. The good
agreement shown in Fig. 2 thus suggests that the analytical expressions for the species
diffusion length and the electrical resistance developed in Part 1 adequately describe the
microscopic solid state diffusion and ohmic drop phenomena, at least under simple
galvanostatic conditions. Detailed discharge and charge characteristics of Ni-Cd cells have
been explored in reference [7] and are not repeated here.

Discharge of a MH electrode.—Figure 3 shows discharge curves of a single MH
electrode at two different current densities. As expected, the electrode potential is seen to
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decrease with the depth of discharge, which is partly due to the decrease in the hydrogen
concentration in MH particles. The electrode potential drops more quickly at a higher
discharge current density  because of the quicker consumption of hydrogen at the particle
surface. The sharp drops in the electrode potential near the end of discharge at both
discharge rates are therefore attributed to the depletion of hydrogen at the MH particle
surface. Once again, it can be seen that the present predictions are in excellent agreement
with the results of De Vidts et al.12 for both discharge rates.

Figure 4 shows the potential drop in the electrolyte across the MH electrode as a function
of DOD. It is seen that this ohmic loss in the electrolyte is quite small (only about 2 mV)
due to the combination of small electrode thickness and large ionic conductivity of the KOH
solution. A good agreement between the present prediction and the previous result is again
seen in Fig. 4. Figure 5 further compares predicted distributions of the hydrogen
concentration at the MH particle surface across the electrode with previous results.12 The
agreement shown in this figure is indicative that the diffusion length used in the present
model has indeed adequately captured the diffusion process of hydrogen from the interior
of MH particles to the surface during discharge.

Discharge of Ni-MH cell.—To model discharge and charge characteristics of Ni-MH
cells for the first time, computer simulations were performed for a Ni-MH cell with equal
charge capacities of the two electrodes. A complete set of model parameters is listed in
Table I. Figure 6 shows the discharge cell potential of the Ni-MH cell at three different
rates. The discharge curves are, in general, similar in shape to those of the Ni-Cd cell. As
explained earlier, the performance of the Ni-Cd cell is limited by proton diffusion in the
nickel active material, while the discharge of the MH electrode is controlled by hydrogen
diffusion in MH particles. It is therefore expected that the cell performance of a Ni-MH cell
may be controlled by either proton diffusion in the nickel active material or hydrogen
diffusion in MH particles. Which mechanism is a more limiting factor would depend on the
cell design, particularly, on particle sizes and diffusion coefficients of the active material in
both nickel and MH electrodes, as well as the ratio of charge capacities of the nickel to MH
electrodes.

To explain the cause for the end of discharge of the simulated cell, Figure 7 shows time-
dependent profiles of the volume-averaged concentration of hydrogen in the MH electrode
and protons in the nickel electrode during discharge at the rate of C/2.1. In general, it can
be observed that the proton concentration increases with time while the hydrogen
concentration decreases with time during discharge. The trends reverse when charging. The
end of discharge in this case is marked by t = 1.72 h, at which time there is still a
considerable amount of hydrogen available in MH particles and the proton concentration in
the nickel active materials has also not yet reached the maximum value, leading to a drastic
increase in the overpotential (Fig. 7). However, the profiles of the surface concentration at
the same discharge times shown in Fig. 8 illustrate that the surface hydrogen concentration
in the MH electrode decreases to virtually zero whereas the surface proton concentration is
still below the maximum value at t = 1.72 h. This clearly shows that the present Ni-MH cell
is MH electrode limited. More specifically, solid state diffusion of atomic hydrogen in MH
particles represents the cell-limiting mechanism. In practice, Ni-MH cells are preferred to
be positive limited and, thus, the capacity of the MH electrode should be designed to be
larger than that of the nickel electrode.
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Figure 9 plots the predicted electrolyte concentration distributions in the Ni-MH cell at the
end of discharge at C/2.1 and C/0.7 rates. The initial concentration is equal to 7.1 M. While
the average electrolyte concentration is seen to remain at the initial value, the electrolyte
concentration is slightly below the initial value due to the consumption of OH- in the MH
electrode and above the initial value due to the generation of OH- in the nickel electrode.
Across the cell, there is, however, neither accumulation nor consumption of OH- during
discharge and charge of Ni-MH cells. This behavior is different from that of Ni-Cd cells in
which the average concentration of the electrolyte increases with time at discharge due to
the consumption of water (the solvent) and decreases at charge because of the production of
water. The nearly uniform electrolyte concentration distributions shown in Fig. 9 indicate
that the mass transfer in the electrolyte is not a factor limiting the performance of the Ni-
MH cell.

Charge of Ni-MH Cell.—The present model is also capable of simulating cell charge and
overcharge in the presence of gas generation and recombination. These overcharge
mechanisms are important to the operation of cells, particularly for cells in series. Figure 10
displays the simulation results for the Ni-MH cell overcharged at two different rates, taking
into account the oxygen evolution at the nickel electrode and oxygen recombination at the
MH electrode. It can be seen that a potential plateau characteristic of gas evolution and
recombination is successfully captured by the model. A detailed study of gas evolution and
recombination in Ni-MH cells, coupled with careful experimentation, is deferred to a future
publication.

Conclusions and Future Work

The micro-macroscopic coupled model developed in Part 1 has been successfully applied to
predict discharge and charge behaviors of Ni-Cd and Ni-MH cells. The model
systematically integrates microscopic solid state physics into macroscopic calculations of
species and charge transfer. The model predictions have been validated against the previous
results available in the literature for a Ni-Cd cell and a single MH electrode with good
agreement. As compared to the pseudo two-dimensional numerical model, the present
model offers a more efficient approach to the modeling of intercalative batteries and can be
more easily applied to simulate complex cycles of discharge, rest, and recharge as involved
in the electric vehicle application.

Computer simulations for discharge and recharge of a Ni-MH cell have been performed.
The new results have shown somewhat different behaviors of Ni-MH cells from that of Ni-
Cd cells. In particular, it was revealed that both hydrogen diffusion in MH particles and
proton diffusion across the nickel active material can be dominant mechanisms limiting cell
performance, depending on the ratio of charge capacities of the two electrodes. Such basic
knowledge of Ni-MH cells would help in the design and optimization of Ni-MH batteries
for various consumer applications and electric vehicles.

Efforts are currently underway to further validate the present Ni-MH model against
experimental data. In addition, potential applications of the present Ni-MH model are being
pursued to develop an integrated simulation and testing scheme to evaluate electric vehicle
batteries and study pulse charging of Ni-MH batteries for rapid rechargeability.
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In closing, the present micro-macroscopic modeling framework can also be extended: (1)
to study gas evolution and recombination in recombinant batteries more rigorously by
permitting the presence of a separate gas phase;17-18 (2) to incorporate thermal effects along
with the solid state diffusion in high power applications; and (3) to develop new models for
other battery systems such as lithium-ion batteries.
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List of Symbols

a specific interfacial area, cm2/cm3

ci volume-averaging concentration of species i over a phase, mol/cm3

c- i
se area-averaging concentration of species i over the solid/electrolyte interface,

mol/cm3

Di diffusion coefficient of species i in a phase, cm2/s
DOD depth of discharge
F Faraday's constant, 96,487 C/mol
f± mean molar activity coefficient of the electrolyte
I applied current density, A/cm2

i−nj area-averaged transfer current density of reaction j, A/cm2

i0j,ref exchange current density of reaction j at reference conditions, A/cm2

ji reaction current density due to production or consumption of species i, A/cm3

L cell width, cm
Le electrode thickness, cm
lse diffusion length of species from solid/electrolyte interface into solid phase, cm
MWi molecular weight of species i, g/mol
Qo maximum charge per unit of projected area of the electrode, C/cm2

R universal gas constant, 8.3143 J/mol·K
Rsb electrical resistance from solid/substrate interface to the bulk of solid, Ω·cm2

Rse electrical resistance from solid/electrolyte interface to the bulk of solid, Ω·cm2

r radial coordinate, cm
ro radius of cylindrical substrate, cm
rs radius of cylinder or sphere of electrode active material, cm
S source term in Eq. 39
SC constant part of source term
SP linear part of sources term
T absolute temperature of the cell system, K
t time, s

to- transference number of OH- with respect to the solvent velocity



16

Uj,ref open-circuit potential for reaction j at reference conditions measured with
respect to a Hg/HgO reference electrode, V

x x- coordinate, cm

Greek symbol

αaj, αcj anodic and cathodic transfer coefficients for reaction j
β morphology correction factor for the conductivity of the cadmium electrode in

Eq. 30
Γ diffusion coefficient pertinent to the general conservable quantity Φ in Eq. 39
ε volume fraction of a phase in the REV
η j surface overpotential of electrode reaction j, V
κ conductivity of an electrolyte, S/cm
κD diffusion conductivity of species i, A/cm
ρi density of species i, g/cm3

σ conductivity of the active material in the electrode, S/cm
τ morphology correction factor for the specific interfacial area of the cadmium

electrode in Eq. 33
φ potential in a phase, V

φ−se average surface potential of solid phase over solid/electrolyte interface, V
Φ a general conservable quantity in Eq. 39

Subscript

b substrate
Cd cadmium electrode
e electrolyte
eff effective
MH metal hydride active material
max maximum value
min minimum value

Ni nickel active material
ref with respect to a reference state
s solid phase
sb solid/substrate interface
se solid/electrolyte interface
o initial value

Superscript

eff effective
H species hydrogen or proton
H2O solvent water
OH species OH-
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Table I. Input parameters to numerical simulations7, 12

Nickel electrode

    specific surface area of nickel substrate, asb

      specific electroactive surface area, aNi

    exchange current density, io1,ref

                                              io2,ref

      electrode thickness, Le

    radius of nickel substrate, ro

    radius of nickel active layer, rs

    open-circuit potential, U1,ref vs. Hg/HgO

                                        U2,ref vs. Hg/HgO

    transfer coefficients, αa1, αc1

                                     αa2, αc2

    porosity of nickel substrate, εb

    porosity of the electrode, εNi

    diffusion coefficient of proton, DH

    maximum concentration of proton, cH
max

      reference concentration of proton, cH
ref

    initial concentration of proton, cH
o

      maximum charge capacity, Qo,Ni

Cadmium electrode

    maximum specific electroactive surface area, aCd,max

    exchange current density, io3,ref

                                             io4,ref

2000 cm2/cm3

3864 cm2/cm3

6.1× 10-5 A/cm2

1.0× 10-11 A/cm2

0.036 cm

1.5× 10-4 cm

2.9× 10-4 cm

0.427 V

0.3027 V

0.5, 0.5

1.5, 0.5

0.85

0.44

4.6× 10-11 cm2/s

5.2098× 10-2 mol/cm3

2.6049× 10-2 mol/cm3

1.0418× 10-2 mol/cm3

20.6× 10-3 Ah/cm2

4000 cm2/cm3

6.1× 10-5 A/cm2

1.0× 10-14 A/cm2
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Table I. (contd.)

    electrode thickness, Le

    equilibrium potential, U3,ref vs. Hg/HgO

                                       U4,ref vs. Hg/HgO

    transfer coefficients, αa3, αc3

                                      αa4, αc4

    maximum porosity of the electrode, εCd, max

    minimum porosity of the electrode, εCd,min

    initial porosity of the electrode, εCd,o

       molecular weight, MWCd

                                  MWCd(OH)2

    density, ρCd

                  ρCd(OH)2

Metal hydride electrode

    specific electroactive surface area, aMH

    exchange current density, io3,ref

    electrode thickness, Le

    radius of metal hydride particle, rs

    equilibrium potential, U3,ref  vs. Hg/HgO

    transfer coefficients, αa3, αc3

    porosity of the electrode, εMH

    diffusion coefficient of hydrogen, DH

0.04 cm

-0.9063 V

0.3027 V

1.0, 1.0

1.5, 0.5

0.64

0.42

0.64

112.4 g/mol

146.4 g/mol

8.64 g/cm3

4.79g/cm3

2100 cm2/cm3

2.84× 10-4 A/cm2

0.04 cm

10-3 cm

-0.861V

0.23, 0.77

0.3

5× 10-11 cm2/s
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Table I. (contd.)

    maximum concentration of hydrogen, cH
max

    reference concentration of hydrogen, cH
ref

    initial concentration of hydrogen, cH
o

    maximum charge capacity, Qo, MH

Separator

    thickness, Ls

    porosity, εs

Electrolyte

    reference concentration of KOH, cOH

       initial concentration of KOH, cOH
o

Oxygen

    diffusion coefficient, DO2

    reference concentration in the electrolyte, cO2
ref

    initial concentration in the electrolyte, cO2
0

Cell temperature, T

22.41× 10-3 mol/cm3

(27.48× 10-3 mol/cm3)*

22.41× 10-3 mol/cm3

(27.48× 10-3 mol/cm3)

22.41× 10-3 mol/cm3

(27.48× 10-3 mol/cm3)

16.8× 10-3 Ah/cm2

(20.6× 10-3 Ah/cm2)

0.025 cm

0.68

6.0× 10-3 mol/cm3

( 7.1× 10-3 mol/cm3)

6.0× 10-3 mol/cm3

(7.1× 10-3 mol/cm3)

10-3cm2/s

10-7mol/cm3

10-20mol/cm3

298.15 K

* Values in parentheses are used in the simulation of Ni-MH cell.
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Table II. Properties of the electrolyte at 298.15 K7, 12

Diffusion coefficient, cm2/s

    DOH = [1.0 - 4.0804(cOH)1/2 + 286.2cOH - 3809.7(cOH)3/2 + 14415.0(cOH)2] ×

               exp[-10.467 - 8.1607(cOH)1/2 + 286.2cOH - 2539.8(cOH)3/2 + 7207.5(cOH)2]

Specific conductivity, S/cm

    κ = cOH exp[5.5657 - 6.1538(cOH)1/2 -13.408cOH - 1705.8(cOH)3/2]

Ratio of electrolyte to water concentrations

    
cOH

cH2O = exp[-6.8818 + 118.75(cOH)1/2 - 1030.5cOH + 4004.7(cOH)3/2]

Mean molar activity coefficient of the electrolyte

                            f± = γ± 


 
ρH2O

ρ - MWKOH cOH

with       lnγ± = 
- 1.1813m1/2

1 + m1/2  + 0.3848m - 0.03205m3/2

               ρ =1.0002 + 45.726cOH - 601.63(cOH)2

               m = 
 


 
1000cOH

ρ - MWKOH cOH

Transference number of OH-                      t
o
- = 0.78
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discharge for C/2.1 and C/0.7 rates
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