
1

J. Electrochem. Soc., in press (1998)

Micro-Macroscopic Coupled Modeling of Batteries and Fuel Cells
Part 1. Model Development

C.Y. Wang1 and W.B. Gu
Department of Mechanical Engineering and Pennsylvania Transportation Institute

The Pennsylvania State University
University Park, PA 16802

e-mail: cwx31@psu.edu
tel: (814)863-4762
fax: (814)863-4848

and

B.Y. Liaw
Hawaii Natural Energy Institute
University of Hawaii at Manoa

Honolulu, HI 96822

_______________________________
1 Corresponding author.



2

ABSTRACT

A micro-macroscopic coupled model, aimed at incorporating solid state physics of
electrode materials and interface morphology and chemistry, has been developed for
advanced batteries and fuel cells. Electrochemical cells considered consist of three phases: a
solid matrix (electrode material or separator), an electrolyte (liquid or solid), and a gas
phase. Macroscopic conservation equations are derived separately for each phase using the
volume averaging technique, and are shown to contain interfacial terms which allow for the
incorporation of microscopic physical phenomena such as solid state diffusion and ohmic
drop as well as interfacial phenomena such as phase transformation, precipitation, and
passivation. Constitutive relations for these interfacial terms are developed and linked to the
macroscopic conservation equations for species and charge transfer. A number of non-
equilibrium effects encountered in high energy density and high power density power
sources are assessed. Finally, conditions for interfacial chemical and electrical equilibrium
are explored and their practical implications are discussed. Simplifications of the present
model to previous macro-homogeneous models are examined. In a companion paper,
illustrative calculations for nickel-cadmium and nickel-metal hydride batteries are carried
out. The micro-macroscopic model can be used to explore material and interfacial properties
for desired cell performance.
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Introduction

Electrochemical power sources such as lead-acid, nickel-cadmium (Ni-Cd), nickel-metal
hydride (Ni-MH), and lithium batteries, as well as various fuel cells, are widely used in
consumer applications and electric vehicles. These and future applications place an ever-
increasing demand for developing more advanced power sources with higher energy
density, higher power density, and longer cycle life. Mathematical modeling is
indispensable in this development process because a cell model, once validated
experimentally, can be used to identify cell-limiting mechanisms and forecast cell
performance for design, scale-up, and optimization. Modeling and simulation of battery
and fuel cell systems has been a rapidly expanding field, thanks in part to the advent of
high-performance computers and advanced numerical algorithms.1 Comprehensive models
are frequently employed to study such battery cells as lead-acid,2-5 nickel-cadmium,6-9

nickel-metal hydride,10 and lithium-ion,11 single electrodes such as metal hydrides,12, 13

and fuel cells such as molten-carbonate14, 15 and proton-exchange-membrane16, 17

systems. The objective of the present work is to develop a new modeling framework to
rigorously and systematically integrate microscopic and interfacial phenomena into a
macroscopic battery or fuel-cell electrode model.

The majority of advanced battery and fuel cell systems employ porous electrodes because
they provide large surface areas and a close proximity of the pore electrolyte or gas (in fuel
cells) to the electrode material to facilitate electrochemical reactions.1 A porous electrode
cell consists of three phases: a solid matrix, an electrolyte, and a gas phase, with complex
interfacial structures. In order to accurately capture the dynamic cell behavior, it is
important not only to consider species and charge transfer across the cell, but also account
for a variety of microscopic phenomena occurring inside the active material as well as on
the electrolyte/electrode interface. These microscopic and interfacial phenomena largely
control the rate of electrochemical reactions and hence battery performance and lifetime,
particularly in high energy density and high power density situations. For instance, in
nickel-metal hydride batteries, proton diffusion in the active material of nickel electrodes
and hydrogen diffusion in metal hydride particles are found to be the primary factors
limiting battery performance and active material utilization.8, 12, 18, 19

For lead-acid batteries under extremely high current and short pulse discharge, LaFollette
and Bennion20 found that the acid concentration at the electrode/electrolyte interface
significantly deviates from that within the pore electrolyte, and interface passivation occurs
as a result of PbSO4 crystal nucleation and growth. These and other non-equilibrium
phenomena occurring at the micro-scale can have strong implications for the cell discharge
and charge curves in high power and short pulse applications.21, 22

It is usually impossible to solve the exact equations on a microscopic scale due to the
complex interface morphology. Instead, macroscopic cell models are derived by averaging
the microscopic (exact) equations over a representative elementary volume that contains all
phases. This volume is much smaller than the cell size but large compared to the pore size
of the electrode. Phase interaction terms appear in the resulting macroscopic equations that
physically represent the effects of the morphology and chemistry of an interface as well as
microscopic transport phenomena on both sides of the interface. Unfortunately, in the
current literature these phase interaction terms have been either ignored or simplified using
equilibrium assumptions to obtain macro-homogeneous battery23 and fuel cell15 models. In
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other words, the interfacial quantities, that are important for determining the electrochemical
reaction rates, such as species concentrations and electrical potentials at the
electrode/electrolyte interface, were not distinguished from their phase-averaged
counterparts and, thus the non-equilibrium effects on the cell performance can not be
assessed.

Most recently, efforts have been made to modify macro-homogeneous models in order to
accommodate non-equilibrium effects occurring at the electrode/electrolyte interface and
solid state diffusion in active materials of intercalative electrodes. Notably, LaFollette and
Bennion20 integrated two ad hoc submodels for the acid concentration variation within
electrode pores and interface passivation due to PbSO4 precipitation, in order to predict
experimental discharge of a lead-acid cell at high rates and short pulses. Fuller et al.11

introduced a microscopic diffusion equation to describe the insertion of lithium ions into the
cathode material. An analytical solution to this equation obtained by the method of
superposition was then incorporated into a macro-homogeneous model to predict
lithium/polymer cell behavior. Similarly, Boute18 and De Vidts and White8 accounted for
microscopic diffusion and ohmic drop occurring inside the active material of a nickel
electrode, but using a pseudo two-dimensional numerical approach. In this approach, a
pseudo dimension is defined inside the layer of active material from the nickel substrate to
the interface with the electrolyte. Differential equations were then solved numerically in the
physical dimensions as well as along this added 'microscopic' dimension. Thus, the
pseudo two-dimensional approach suffered from excessive computational burdens. Similar
approaches have been applied to simulate single metal hydride electrodes12, 13 and a Ni-
MH cell.10

The present work builds upon previous work by using the volume-averaging technique
for the derivation of cell models,1, 15, 23, 31 and places new emphasis on a detailed
description of the phase interaction terms under interfacial non-equilibrium conditions.
Such a micro-macroscopic coupled model is expected to better capture the dynamic
behavior of high energy density and high power density electrochemical power sources. In
a companion paper, some capabilities of the micro-macroscopic model will be demonstrated
through applications to Ni-Cd and Ni-MH cells.

A Micro-Macroscopic Model
 

Consider an electrochemical cell composed of a positive electrode, a negative electrode,
and a separator in between acting as an electronic insulator, as schematically illustrated in
Fig. 1. All three components are porous and wholly or partially filled with an electrolyte
(either liquid or solid). The electrolyte is an electronic insulator, but a good conductor of
the ionic species inside the cell. In many situations, a gas phase is also present in the cell,
e.g., in valve-regulated lead-acid (VRLA) batteries as well as in Ni-Cd and Ni-MH
batteries during overcharge or overdischarge. Therefore, the electrochemical cell under
consideration consists of three phases: solid electrode matrix (s), electrolyte (e), and gas
(g). During discharge or charge, electrochemical reactions occur at the electrode/electrolyte
interface (i.e., the s-e interface) according to the following general formula

∑
species

sjM
z
j  = nje- [1]
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where the summation is over all species involved in reaction j. Mj is a general symbol for
the chemical formula of a species participating in the electrochemical reaction, z and s are
the charge number and the stoichiometric coefficient of the species, and n is the number of
electrons transferred in reaction j. The values of sj, z, and nj can readily be determined by
comparing a specific electrode reaction to this general form.

Multiple electrochemical reactions are considered in the present work. This feature is
important for the modeling of battery overcharge or overdischarge where side reactions
such as oxygen evolution and recombination can occur along with the main electrode
reactions. The production rate of a species due to electrochemical reactions occurring at the
electrode/electrolyte interface is given by Faraday's law

rse = - ∑
j
(

sj
njF

 inj) [2]
with

inj = ioj 



 



exp
 


 
αajF

RT  η j  -  exp
 


 
-

αcjF
RT  η j [3]

where inj is the transfer current density of reaction j, F Faraday's constant, R the universal
gas constant, and T the cell temperature. Equation 3, commonly known as the Butler-
Volmer equation, describes a large class of electrode reactions.

The exchange current density for reaction j, ioj, depends strongly on the compositions
and temperature of the electrolyte adjacent to the electrode/electrolyte interface. The anodic
and cathodic transfer coefficients, αaj and αcj, are usually determined from experimental
measurements. The surface overpotential for reaction j, ηj, is defined as

η j  = φs -  φe -  Uj [4]
where φs and φe are the potentials of solid electrode and electrolyte, respectively, at the
electrode/electrolyte interface. The last term in Eq. 4, Uj, is the open-circuit potential of
reaction j which is, in turn, a function of the reactant and product concentrations at the
interface as generally expressed by the Nernst equation with respect to a specified reference
electrode. Note that the interfacial overpotential, η j, represents the driving force for
electrochemical reaction j. Also, all variables in the Butler-Volmer equation, Eq. 3, are
evaluated at the electrode/electrolyte interface. In high energy density cells or under high
power operating conditions, the interfacial values may significantly depart from their bulk
counterparts within the electrode pores, giving rise to local non-equilibrium effects.
Incorporating such  interfacial effects constitutes a major objective of the present work.

In the present work, it is assumed that a battery cell is isothermal so that thermal effects
are not considered. The electrolyte (in either liquid or solid state) is considered as a
concentrated binary electrolyte; namely, it is dissociated into a cation and an anion. Hence,
the theory for concentrated binary electrolytes is employed.1 To begin with, a set of
microscopic conservation equations is summarized below.

Microscopic conservation equations.—In multiphase electrochemical systems such as
porous electrodes, electrochemical processes are generally governed by the principles of
conservation of mass, momentum, species, and charge in each phase. These field equations
are further coupled through interfacial balance conditions. In most porous electrodes, fluid
motion is absent or can be neglected and, thus, the principles of mass and momentum
conservation can be eliminated from model considerations. However, in the following
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model development, we include these balance laws in order for the model to be applicable
to general electrochemical systems, including flow-through electrodes24 or fuel cells.25

• Conservation of Mass and Momentum
The fluid motion in phase k is determined by the mass and momentum balances, which can
be expressed by

∂ρk
∂t

 + ∇⋅ (ρkvk) = 0 [5]

and
∂
∂t

 (ρkvk) + ∇⋅ (ρkvkvk) = - ∇ pk + ∇⋅τ k + Βk [6]

respectively. Here subscript k stands for phase k, and τ and B are the stress tensor and
body force vector, respectively. Other symbols are defined in the List of Symbols, and
explanations of the continuity and momentum equations are available in fluid mechanics
textbooks.

• Conservation of Species
Mass balance of a species in phase k is given by

∂ck
∂t   = - ∇⋅ Nk [7]

with the jump species balance condition at the interface between phases k and m given by
Slattery26

(Nk-  ckwk)·nk  + (Nm-  cmwm)·nm  = - rkm [8]
where c and N are the molar concentration and flux of the species, with subscript k or m
referring to phase k or m; the vectors w and n denote the interface velocity and the normal
unit vector pointing outward from the phase denoted by the subscript; and rkm is the
production rate of the species per unit surface area at the k-m interface due to heterogeneous
electrochemical reactions as determined by Eq. 2 and/or phase transformations of non-
electrochemical nature such as evaporation and condensation.

In general, the molar flux of a species in phase k can be written as

Nk = - Dk∇ ck + 
tk
zF ik + ckvk [9]

where Dk and tk are the diffusion coefficient and transference number of the species in
phase k with respect to a reference velocity, respectively. In this work, the mass-averaged
velocity of phase k, vk, is conveniently chosen as the reference velocity because it is a
primary variable in the continuity and momentum equations, i.e., Eqs. 5 and 6. Equation 9
indicates that the species transfer in phase k is due to diffusion, migration, and advection.
In a solid electrolyte the solid velocity is identically zero, leaving the species transfer by
diffusion and migration only. Furthermore, migration of ionic species in solid electrode
materials under an electric field is usually negligible (i.e., ts≈0).

• Conservation of Charge
Electrochemical reactions occur at the interface between the active material and the
electrolyte. Therefore, no charge is generated or consumed within each phase, yielding

∇⋅ ik = 0 [10]
with the interface boundary condition

ik·nk = - ∑
j
inj [11]
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where ik is the current density in phase k.
The transport of charge in the solid active material is by electrons and thus can be

described by Ohm's law
is = - σ∇φ s [12]

where is and φs are the current density and electric potential in the solid phase,
respectively, and σ is the solid electronic conductivity. In contrast, the charge transfer in
electrolytes (in both liquid and solid states) is by ions that are moving due to migration and
diffusion; therefore, the electrochemical potential form of Ohm's law which includes the
combined effects of concentration and potential gradients is used for a concentrated binary
electrolyte

ie  = - κ∇φ e -  κD∇ (ln ci
e) i = + or - [13]

where κ is the effective conductivity of the electrolyte, and κD is termed as "diffusion
conductivity" to account for the rate of charged particle motion due to diffusion of ionic
species (under the influence of a concentration gradient). Following Newman1 (e.g.,
Section 12.4), one can show that

κD = 
νRTκ

F   



 

si

nνi
 +  

toi
ziνi

 -  
soce
nco

 
 


 
1+ 

dln f±
dln ce

[14]

where n, s+, s-, so, ν+, ν-, and ν represent the number of electrons transferred, the
stoichiometric coefficients for anion, cation, and solvent, and the numbers of cation, anion,
and moles of ions into which a molecule of electrolyte dissociates in the reaction at the
reference electrode, respectively; ce and co are the molar concentrations of the electrolyte
and solvent in the electrolyte phase, respectively, whereas ci

e is the molar concentration of
ion i. Lastly, f± is the mean molar activity coefficient of the electrolyte, and to

i  is the
transference number of cation or anion with respect to the solvent velocity.

Volume averaging.—Macroscopic governing equations can be derived from their
microscopic counterparts using the local volume averaging technique as demonstrated in the
literature on transport in porous media.27-30 The same technique has also been widely used
in the modeling of batteries23, 31 and fuel cells.15 Therefore, this section will only briefly
outline the key averaging steps and theorems for completeness.

Let Vo be the volume of a representative elementary volume (REV) containing a solid
phase (k=s) (electrode matrix), an electrolyte phase (k=e) (liquid or solid), and a gas phase
(k=g). The solid phase may consist of both a substrate and an active material layer. For any
quantity in phase k, Ψk, the general averaging theorems can be stated as27, 28, 30

Temporal derivative

〈∂Ψk
∂t 〉 = ∂〈Ψk〉

∂t  -  
1
Vo

 ∫
Ak

Ψkwk·nkdA [15]

Spatial derivative

〈∇Ψ k〉 = ∇〈Ψ k〉 + 
1
Vo

 ∫
Ak

ΨknkdA [16]

where wk is the velocity of the surface bounding phase k, nk is the normal unit vector
pointing outward from phase k, and Ak stands for the total interfacial area of the k-phase
adjacent to all other phases, m

Ak = ∑
m

Akm m≠k [17]
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The averaging operator and the intrinsic volume average are defined, respectively, as

〈Ψk〉 = 
1
Vo

 ∫
Vo

XkΨkdV [18]

〈Ψk〉k = 
1
Vk

 ∫
Vo

XkΨkdV [19]

with Xk denoting a phase function, equal to unity in phase k and zero elsewhere, and Vk is
the volume of phase k in Vo. By definition, these two volume averages are related by

〈Ψk〉  = εk 〈Ψk〉
k [20]

where εk  is the volume fraction of phase k in the averaging volume Vo.

Macroscopic equations.—Equations 15 and 16 are the theorems needed to obtain a set of
macroscopic equations by volume-averaging the microscopic governing equations. A
detailed derivation follows with particular focus on the treatment of newly arising phase
interaction terms so that a closed micro-macroscopic model is obtained.

• Equation of Mass Conservation
Applying the averaging procedure to Eq. 5 and making use of the theorems, Eqs. 15 and
16, yield32

∂(εkρk)
∂t

 + ∇⋅ (εkρk〈vk〉k) = ∑
m

 Γkm               m ≠ k [21]

with

 Γkm = 
1
Vo

 ∫
Akm

ρk(wk -  vk )·nkdA [22]

Here Γkm represents the phase transformation rate at the k-m interface from phase m to
phase k. Using the mean value theorem for integrals, this interfacial term can be modeled as
a product of a specific interfacial area and a mean interfacial flux, namely 

Γkm = akmρkw−nkm [23]
where akm=Akm/Vo is the specific area of the k-m interface within the averaging volume Vo
(cm2/cm3) and w−nkm is defined as the average normal velocity of the k-m interface relative
to phase k and directing outward from phase k. In the context of porous electrodes, w−

nkm
stems from the phase transformation accompanying all electrode reactions. One example is
the solid/solid phase transformation, such as Pb to PbSO4 and PbO2 to PbSO4 in discharge
of lead-acid batteries and Cd to Cd(OH)2 in Ni-Cd batteries. Another example of the
interface movement can be found in hydriding and dehydriding processes of metal hydride
alloys.

At the electrochemically active surface, i.e., the s-e interface, the interface movement
leading to electrode structural changes is caused by species transformation during all
electrochemical reactions. Hence

 w−nse = ∑
j

∑
species

     
 


 
sj

njF
 i−njV

—
s [24]

where i−
nj is the average transfer current density of reaction j as determined by Eq. 3 based

on the average overpotential, η− j  = φ−se - φ
−

es - Uj, and V
—

s is the partial molar volume of a
species in the solid phase. Substitution of the above into Eq. 23 results in

Γse  = ase ρs ∑
j

∑
species

     
 


 
sj

njF
 i−njV

—
s [25]
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Applying Eq. 21 to the solid electrode phase (k=s) and noting that the solid velocity is zero
result in

∂(εsρs)
∂t

 = ase ρs ∑
j

∑
species

     
 


 
sj

njF
 i−njV

—
s  [26]

where the partial molar volume, V
—

s, is equal to (MW/ρ), with MW and ρ being the
molecular weight and density of the species in the solid phase, respectively. In view of the
fact that the electrode porosity is simply equal to (1-εs), Equation 26 is commonly used to
calculate the electrode porosity variation during charge and discharge.4, 8

• Equation of Momentum Conservation
Application of volume averaging to Eq. 6 results in

∂
∂t

 (εkρk〈vk〉k) + ∇⋅ (εkρk〈vk〉k〈vk〉k) = - εk∇〈 pk〉k + ∇⋅(〈τ k〉 + 〈τ t
k〉) + εk 〈Βk〉

k

+ ∑
m

(Md
km + MΓ

km
) [27]

with 〈τ
t

k〉  = 〈 (vk - 〈vk〉k)(vk - 〈vk〉k)〉 [28]

Md
km = 

1
Vo

 ∫
Akm

τk ·nkdA [29]

M
Γ
km = 

1
Vo

 ∫
Akm

ρkvk(wk -  vk )·nkdA [30]

Here, 〈τ t
k〉 is the dispersive shear stress and Md

km and M
Γ
km are the interfacial momentum

transfer rates due to viscous/form drag and interface movement, respectively. The
combined macroscopic and dispersive shear stresses in Eq. 27 can be further modeled by
introducing an effective viscosity33

〈τ k 〉 + 〈τ t
k〉  = µ*

kεk ∇〈 vk〉k [31]

where µ*
k represents an overall macroscopic transport property, which is a function of not

only the microscopic transport property but also the microstructure and microscopic flow
fields in porous electrodes. Since flow through electrodes is usually very slow, the
effective viscosity can be taken to be equal to its microscopic counterpart as a first
approximation.

In porous media literature, the total interfacial drag, including both Md
km and M

Γ
km, is

usually modeled by introducing the generalized Darcy's law,29, 34 so that

 ∑
m

(Md
km + M

Γ
km) = -ε2

k 
µk

Kkrk
 ·〈vk〉k [32]

where K is the absolute permeability of the porous electrode and krk is the relative
permeability for phase k which accounts for a decrease in the effective flow cross-section
due to the presence of other fluids in the open pores of an electrode. The relative
permeability is a function of phase volume fractions as determined empirically.30

Substitution of Eqs. 31 and 32 into Eq. 27 yields the following form of the macroscopic
momentum equation:

∂
∂t

 (εkρk〈vk〉k) + ∇⋅ (εkρk〈vk〉k〈vk〉k) = - εk∇〈 pk〉k + ∇⋅(µ *
kεk ∇〈 vk〉k)

+ εk 〈Βk〉
k - ε2

k 
µk

Kkrk
 ·〈vk〉k [33]

Further assuming a constant porosity of the electrode, this equation reduces to the one
previously used in the modeling of acid stratification in lead-acid batteries.5
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• Equation of Species Conservation

Carrying out the same averaging procedure to Eq. 7 results in
∂〈ck〉

∂t   = - ∇⋅〈 Nk〉 -  1
Vo

 ∫
Ak

(Nk -  ckwk)·nkdA [34]

In view of Eq. 9, the volume-averaged molar flux of a species in phase k, 〈Nk〉, can be
expressed as

〈Nk〉 =- 〈Dk∇ ck〉  + 
tk
zF 〈 ik〉 + 〈ckvk〉 [35]

where the coefficient tk/zF has been removed from the averaging symbol because it can be
safely assumed to be constant within the averaging volume Vo. Physically, the first term on
the RHS of Eq. 35 describes the macroscopic species diffusion and thus is traditionally
modeled using an effective mass diffusivity,15, 23 namely

〈Dk∇ ck〉 = Deff
k  ∇〈 ck〉

k [36]

where Deff
k

 also includes the effect of tortuosity. The third term on the RHS of Eq. 35 is
traditionally described by the product of the volume-averaged concentration and velocity,
plus an additional term called hydrodynamic dispersion, which results from variations of
the microscopic velocity and species concentration,30 namely

〈ckvk〉 = εk 〈ck〉
k〈vk〉

k -  Da∇〈 ck〉
k [37]

where Da is the dispersion coefficient representing the effect of axial dispersion due to the
fluid flow near the pore wall differing from the bulk flow. The dispersion coefficient is not
a fundamental transport property; rather, it depends on the extent of fluid mixing and
vanishes in the absence of  convective fluid motion.1

Substituting Eqs. 36 and 37 into Eq. 35 results in

 〈Nk〉 =- (Deff
k  + Da)∇〈 ck〉

k + 
tk
zF 〈 ik〉 + εk 〈ck〉

k〈vk〉
k [38]

so that Eq. 34 becomes
∂(εk〈ck〉

k)
∂t  + ∇⋅(ε k 〈ck〉

k〈vk〉
k) = ∇⋅[( Deff

k  + Da)∇〈 ck〉
k] -  ∇⋅

 


 
tk

zF 〈 ik〉

+ 
1
Vo

 ∫
Ak

Dk∇ ck·nkdA -  
1
Vo

 ∫
Ak 


 
tk

zF  ik·nkdA + 
1
Vo

 ∫
Ak

ck(wk -  vk)·nkdA [39]

Application of the averaging procedure to Eq. 10 leads to

∇⋅〈 ik〉  + 
1
Vo

 ∫
Ak

ik⋅nkdA = 0 [40]

Thus, a part of the second term on the RHS of Eq. 39 cancels out with the fourth term, and
the resultant equation can be written as

 
∂(εk〈ck〉

k)
∂t  + ∇⋅(ε k 〈ck〉

k〈vk〉
k) = ∇⋅[( Deff

k  + Da)∇〈 ck〉
k]

+ ∑
m

 (Jdkm + J
Γ
km) -  〈ik〉⋅∇ (

tk
zF) [41]

where

Jd
km = 

1
Vo

 ∫
Akm

Dk∇ ck·nkdA [42]

J
Γ
km = 

1
Vo

 ∫
Akm

ck(wk -  vk )·nkdA [43]
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The terms Jdkm and J
Γ
km represent the interfacial transfers of a species in phase k due to

microscopic diffusion and interface movement, respectively. Equation 41 states the
conservation of species in a liquid or solid electrolyte solution.

The interfacial species transfer terms appearing in the above equation, if properly
modeled, provide ways to incorporate microscopic phenomena into a macroscopic model.
Based on the mean value theorem for integrals, the species transfer term due to interface
movement can be modeled as the product of the mean interfacial concentration and the
interfacial mass flux

J
Γ
km = c−kmΓkm [44]

Likewise, the integral in Eq. 42 can be evaluated as the product of the interfacial specific
area and a mean interfacial diffusive flux. Physically, this interfacial mass transfer term
describes the diffusion process caused by microscopic concentration gradients. The
diffusive flux is directly proportional to its driving force, namely, the difference between
the interfacial and volume-averaged concentrations of a species. On the other hand, the flux
is inversely proportional to a so-called species diffusion length, l, which characterizes the
resistance to diffusion. Hence, it follows that

Jd
km  = akm Dk 

∂ck
∂nk

 |km = akm Dk 
c−km -  〈ck〉 k

lkm
[45]

Mathematically, the diffusion length of a species in phase k is thus defined as

lkm = 
c−km -  〈ck〉 k

-
∂ck
∂nk

 |k m 

[46]

where Dk refers to the diffusion coefficient of a species in phase k, and c−km is the area-
averaged concentration of the species at the k-m interface. Figure 2 schematically illustrates
the microscopic concentration distributions in the solid active material and the electrolyte
phase. The interface depicted in Fig. 2 represents an infinitesimal section of the interface
shown in Fig. 1 and is drawn for simplicity as a straight line. The physical meaning of the
diffusion length, l, is also shown. The diffusion length defined by Eq. 46 is generally a
complicated function of the microscopic phenomena, and its determination requires a
formal microscopic analysis of the diffusion process in a phase, as will be shown in the
next section.

The two interfacial species transfer terms are constrained by an interfacial balance which
can be obtained by integrating Eq. 8 over the interface between phases k and m within the
averaging volume Vo, yielding

1
Vo

 ∫
Akm

(- Dk∇ ck + 
tk
zF ik  + ckvk -  ckwk)·nkdA

+ 
1
Vo

 ∫
Akm

(- Dm∇ cm + 
tm
zF im + cmvm -  cmwm)·nmdA = -akmr−km [47]

where r−km is an average reaction rate over the interface Akm. By the definitions given in
Eqs. 42 and 43 and using the relation given by Eq. 11, the above can be rewritten as

(Jd
km + J

Γ
km) + (Jdmk + J

Γ
mk) = akm

 


 
r−k m - 

tk + tm
zF  ∑

j
i−nj [48]

Two special cases of Eq. 48 are worth exploring. First, if the k-m interface is
electrochemically reactive, the ionic species usually exists only on one side of the interface,
say in phase k, so that Eq. 48 reduces to
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(Jd
km + J

Γ
km) = - akm

 



 

∑

j
(
tk
zF +  

sj
njF

) i−nj [49]

where use has been made of Eq. 2 in the area-averaged sense. This expression is not only
directly usable in the volume-averaged species equation, Eq. 41, but also can be used to
calculate the interfacial species concentration c−

km by substituting the constitutive relations,
given by Eqs. 44 and 45, into Eq. 49, yielding

c−km(Γkm + 
akmDk

lkm
) = 

akmDk
lkm

〈ck〉
k -  akm

 



 

∑

j
(
tk
zF +  

sj
njF

) i−nj [50]

where the phase transformation rate Γkm is determined via Eq. 25. Note that Eq. 50 is
tightly coupled with the Butler-Volmer equation which calculates the transfer current
density i−

nj, because the exchange current density and equilibrium potential are strong
functions of the interfacial species concentration, c−

km.
Secondly, if the k-m interface is electrochemically non-reactive and the species is neutral

(e.g. hydrogen or oxygen dissolved in the liquid phase and existing in the gas phase as
well), the interfacial species balance, Eq. 48, reduces to

(Jd
km + J

Γ
km) + (Jdmk + J

Γ
mk) = 0 [51]

Substituting Eqs. 44 and 45 into the above and solving the resultant for Γkm yields

Γkm = 

akmDk
lkm

 (c−km -  〈ck〉 k) + 
amkDm

lmk
 (c−mk -  〈cm〉m)

c−m k -  c−km
[52]

where use has been made of the interfacial mass balance Γmk= - Γkm. Equation 52 can be
used to calculate the phase transformation rate, provided the interfacial species
concentrations c−

mk and c−km are given by thermodynamic relations at the interphase
boundary.

• Equations of Charge Conservation
The volume-average of Eq. 10 was given by Eq. 40, which can be rewritten as

∇⋅〈 ik〉  -  ∑
m

Ikm = 0 m ≠ k [53]

where the interfacial current per unit of volume (A/cm3) is given by

Ikm = -  
1
Vo

 ∫
Akm

ik·nkdA [54]

Substituting Ohm's law to relate the current density with electrical potential, we have31

∇⋅(σ eff∇〈φ s〉
s) + ∑

m
Ism = 0 m≠s [55]

for the solid phase. For the electrolyte phase, Equation 13 is instead used, resulting in

∇⋅(κ eff∇〈φ e〉
e) + ∇⋅(κ eff

D ∇〈 ln ci
e〉

e) + ∑
m

Iem  = 0 m≠e [56]

Using a Taylor series, it is easy to prove that31

〈 ln ci
e〉

e = ln〈ci
e〉

e
 [57]

Thus, Equation 56 can be finally rewritten as

∇⋅(κ eff∇〈φ e〉
e) + ∇⋅(κ eff

D ∇ ln 〈ci
e〉

e) + ∑
m

Iem = 0 m≠e [58]
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The interfacial current density Ikm at the electrode/electrolyte interface is simply equal to

 Ise = -  Ies = ase ∑
j

i−nj [59]

Alternatively, for a generic k-m interface, the interfacial current density can also be
modeled, similar to the interfacial species transfer term due to diffusion, by

Ikm = akm 
φ−km -  〈φk〉 k

Rkm
[60]

where Rkm in the unit of Ω cm2 is defined as

Rkm =
φ−km-  〈φk〉 k

 -  σ∂φk
∂nk

 |km

[61]

and represents a characteristic ohmic resistance between phase k and the k-m interface.
Equation 60 assumes that phase k is a solid so that Ohm's law is valid for relating current
to potential. The expression for the interfacial current density in a liquid phase, however,
needs a slight modification by taking migration into account. Hence

Ikm = akm φ
−

km-  〈φk〉 k

Rkm
 + akm κD

c−kmlkm
 (c−km -  〈ck〉

k) [62]

where phase k is an electrolyte. Now, combining either Eq. 60 or 62 with Eq. 59, one can

determine the interfacial potentials φ−se and φ−es, which will, in turn, be used to determine
the interfacial overpotential for electrochemical reactions. In practice, because the solid

phase is usually a good electronic conductor (i.e., large values of σ), it follows that  φ−se is

nearly identical to 〈φs〉
s. Semiconductor electrode materials, however, are an exception in

which it is necessary to differentiate φ−se from 〈φs〉
s. In contrast, the ionic conductivities in

liquids are usually low, leading to a substantial discrepancy between φ−es and 〈φe〉 e,
especially in high current situations. This implies that it may no longer be appropriate any

more to use 〈φe〉
e in place of φ−es in the calculation of the transfer current density via the

Butler-Volmer equation. Relations between the volume-averaged and interfacial potentials
are schematically illustrated in Fig. 2.

  Summary of  model equations.—In summary, Equations 21, 33, 41, and 55 or 56 form a
complete set of macroscopic governing equations for four volume-averaged unknowns: εk,
〈vk〉

k, 〈ck〉
k, and 〈φk〉

k. These are now summarized in Table I along with the expressions
for respective interfacial transfer terms. The interfacial species and charge balances also
given in Table I can be used to determine the interfacial species concentrations and electrical
potentials in non-equilibrium situations and hence the rates of electrode reactions via the
Butler-Volmer equation. Microscopic and interfacial phenomena, reflected through the
various interfacial transfer terms, are integrated into the macroscopic cell model primarily
through three interfacial parameters: the specific area akm, the species diffusion length lkm,
and the ohmic resistance Rkm. Accurate determination of these quantities is crucial and
requires a formal microscopic analysis of the interface morphology, as well as the  species
diffusion and charge transfer in the vicinity of the interface, as will be shown below.
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Microscopic Modeling

This section will present microscopic analyses to develop relations for the three interfacial
parameters that play critical roles in the micro-macroscopic coupled model. It will be shown
that through these constitutive relations, microscopic phenomena such as solid state
diffusion, ohmic resistance in the semiconductor state of active materials, and interfacial
phenomena (e.g., electrochemical area passivation and non-equilibrium conditions), can all
be incorporated into the model in a consistent manner.

Interfacial active area.—The previous section shows that the specific area of the
electrode/electrolyte interface, ase=Ase/Vo, is an important ingredient in the modeling of the
interfacial transfer terms. From a physical point of view, the specific area contains the
information regarding the geometry of an interface that is lost through the averaging
process. This information plays an important part in the cell behavior and must be restored
through a constitutive relation. The specific interfacial area is dependent on the morphology
and dynamics of the interface. It decreases as interface passivation occurs due to solid
precipitation in electrochemical reactions. The specific area of porous electrodes can be
measured by the adsorption method or double-layer charging.1

For an electrode made up of spherical particles of radius rs, the initial specific area is
readily given by

ao
se = 

3εs
rs

 = 
3(1 - εo)

rs
[63]

where εo is the porosity of the electrode. For irregularly shaped particles, it is proposed to
directly base the micro-macroscopic model on the specific surface area ao

se, because it can
be easily measured and its inverse is a more accurate representation of the length scale of a
complex microstructure than traditionally employed average particle sizes.35, 36

Interface passivation may occur as a result of nucleation and growth of solid precipitates;
for example, in lead-acid batteries the solid PbSO4 crystals nucleate and grow during
discharge, passivating a portion of the interfacial area that would otherwise be available for
electrochemical reactions. The passivation in this case can be commonly described by a
simple geometrical relation20

ase = ao
se[1 - (εPbSO4/εo)p] [64]

where εPbSO4 is the volume fraction of PbSO4 precipitate and p is a geometrical factor
varying from 0 to 1. Small values of p are indicative of flat, plate-like precipitate of PbSO4
crystals, which in the limit of infinitely small p values become a sheet of precipitate. Larger
values of p suggest needle-like crystals which block little active area. The volume fraction
εPbSO4 can further be calculated by combining the nucleation and growth models of PbSO4
crystals, as done by LaFollette and Bennion.20 An alternative but simpler approach is to
correlate the ratio εPbSO4/εo with the depth of discharge

εPbSO4
εo

 = 
Q
Qo

[65]

where Qo is the maximum capacity of the electrode (C/cm3) and Q is the number of
coulombs of charge remaining.

Interface passivation of MH particles in an MH electrode has been experimentally noted
to cause slow degradation in the performance of the MH electrode upon cycling;37
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however, no modeling work has been carried out on the effect of this passivation on battery
performance.

Species dffusion length.—We derive herewith analytical expressions for the species
diffusion length in all three geometries of interest: plate-like, cylindrical, and spherical. The
cylindrical geometry is representative of the morphology of the nickel electrode in Ni-Cd
and Ni-MH batteries, while a sphere is typical of the morphology of many particulate
electrodes such as MH and lithium composite electrodes. Take the cylindrical geometry as
an example. The active materials are assumed to be uniformly coated onto a cylindrical
substrate. Because the layer of active materials is thin, the effect of curvature may be
insignificant and it is reasonable to assume a parabolic distribution for the species
concentration across the layer38, namely

cs = a0 + a1r + a2r2 [66]
where r is the radial distance. The following boundary conditions apply

∂cs
∂r  = 0  at r = ro [67]

 cs = c−se  at r = rs [68]
where ro is the radius of the substrate and rs is the radius of the electrode/electrolyte
interface. In addition, the known local volume-averaged concentration 〈cs〉

s is defined as

〈cs〉
s  = 

1
Vs

 ∫
Vs

cs  rdr = 
2

r2s - r
2
o

 ∫
rs

ro
cs rdr [69]

Using Eqs. 67 through 69, the three coefficients, a0, a1, and a2 in Eq. 66 can be
determined, and the species concentration profile is found to be given by

c−se -  cs

c−se -  〈cs〉
s = 

(rs - r)(rs - 2ro + r)

r
2
s - r

2
o

2  -  
2
3 rsro +  

4r
3
o

3(rs + ro)

[70]

According to  Eq. 46, the diffusion length is readily found to be expressed by

lse = 
rs + ro

4  - 
rsro

3(rs - ro) + 
2r

3
o

3(r2s - r2
o)

 [71]

When ro=0, the above reduces to

lse = 
rs
4 [72]

This clearly indicates that the diffusion length is proportional to the characteristic length of
electrode particles with a numerical factor of the order of unity.

The above derivation for the species diffusion length can be similarly extended to
Cartesian and spherical coordinate systems. For brevity, only the final results are presented
here

l  se = 
rs
3 [73]

for a plate-like active material layer with the half thickness of rs and

l  se = 
rs
5 [74]
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for a spherical particle of radius rs. Equation 74 is useful in the modeling of MH and
lithium composite electrodes, while Eq. 71 is applicable to composite nickel electrodes with
substrates. Note that the diffusion lengths for various geometries differ only by a numerical
factor of the order of unity. Use of diffusion lengths provides an opportunity to include, in
a macroscopic cell model, the rate-limiting microscopic phenomena such as solid state
diffusion in active materials and ionic species diffusion in the electrolyte.

Microscopic ohmic resistance.—Similar to the diffusion length, the microscopic ohmic
resistance defined by Eq. 61 is dependent on the charge transport processes in a phase and
must be analyzed microscopically. Once again, the charge transfer inside a cylindrical active
material layer bounded by the electrode/electrolyte and electrode/substrate interfaces will be
considered.

By definition (i.e., Eq. 61), the ohmic resistances from the electrode/electrolyte interface
and from the electrode/substrate interface to the bulk of the active material layer are given,
respectively, by

Rse  = 
φ−se -  〈φs〉

s

 - σs 
∂φs
∂r  |r=rs

[75]

Rsb  = 
φb -  〈φs〉

s

 - σo 
∂φs
∂r  |r=ro

[76]

where the subscript b denotes the substrate and φs is the microscopic profile of electrical
potential in phase s (i.e., active material layer). Note that the conductivity σ varies with the
location as it is a function of the local state of charge, so the symbols σo and σs  denote the
conductivities at the electrode/substrate and electrode/electrolyte interfaces, respectively.
The current flows only in the radial direction and there is no charge generated or consumed
within the active layer. As such, integration of charge balance over the thickness of the
active material layer yields

 


 
σ ·r 

∂φs
∂r  

r=ro
 = 

 


 
σ ·r 

∂φs
∂r  

r=rs
[77]

In addition, two other boundary conditions must be met

φs=φb at r=ro  and  φs = φ−se at r=rs [78]
Hence, assume a parabolic profile for φs

φs = a0 + a1(r -  ro) + a2(r -  ro)2 [79]
where three coefficients can be determined from the three boundary conditions given in
Eqs. 77 and 78. Substitution of the profile for φs into Eqs. 75 and 76 yields

Rse = 
rs
12 

 


 
rs -  ro

rs + ro
 
 


 
rs + 3ro

σoro
 + 

3rs + 5ro
σsrs

[80]

and

Rsb = 
ro
12 

 


 
rs -  ro

rs + ro
 
 


 
5rs + 3ro

σoro
 + 

3rs + ro
σsrs

[81]

Clearly, these resistances are directly proportional to a micro length scale (rs or ro) and
inversely proportional to the conductivity σ, thus characterizing the microscopic ohmic
drop occurring inside the active material of the electrode.
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Discussion

The model equations developed in the preceding section and summarized in Table I are
valid for any volume fraction and in both electrode and separator regions. They even reduce
to the correct limit for a pure liquid electrolyte reservoir (i.e., εe=1). Therefore, the present
model is suitable for one-domain numerical solution methodologies, which will remove
typical difficulties associated with traditional multi-domain approaches where matching
boundary conditions between sub-domains must be implemented. This feature can facilitate
numerical implementation and simulation of complete cells.

We explore below the limiting conditions with regard to interfacial equilibrium and
associated physical significance. Reduced versions of the present model in the equilibrium
case will then be derived and compared to previous macro-homogeneous models for
batteries and fuel cells.

Interfacial chemical equilibrium.—According to Eq. 50 or 52, interfacial chemical
equilibrium (i.e., c−

km=〈ck〉
k) requires that

akmDk
lkm

 → ∞ [82]

Recognizing that akm ~ 1/rs and lkm ~ rs (see Eqs. 63 and 72 through 74), the condition
given by Eq. 82 can equivalently be expressed as

Dk

r2
s

 → ∞ [83]

For typical liquid-mass diffusivities and particle sizes of battery electrodes, Eq. 83 is
generally satisfied except in high current and/or short pulse situations. In contrast, species
diffusion coefficients in solids are usually four to six orders of magnitude lower than that
of liquids and, thus, the condition expressed by Eq. 83 is highly questionable, implying
that the solid state diffusion is likely to be a limiting mechanism for cell behavior. The
interfacial chemical non-equilibrium in the solid active material phase has long been
recognized and extensively studied.

Moreover, note that the left-hand side of Eq. 83 represents the inverse of the
characteristic time for species diffusion from the electrochemical interface into the interior
of each solid particle or electrolyte-occupied pore. For a pore size of 1 µm to 10 µm and an
effective diffusion coefficient of 10-9 m2/s in common liquid electrolytes, this leads to
diffusion times on the order of 1 ms to 100 ms. In rapidly pulsed charge and discharge
situations where pulses are usually of 1 ms duration, the interfacial chemical equilibrium
inside electrolyte pores within an averaging volume is clearly invalid. For a solid-phase
electrolyte (e.g., in lithium/polymer batteries), the diffusion coefficient is on the order of
10-11 m2/s,39, 40 and the corresponding diffusion times would increase up to between 100
ms and 10 s. In this case, the interfacial chemical equilibrium in solid-phase electrolytes
becomes questionable even under normal discharge and recharge conditions. A scenario of
relevance is the electric vehicle application, in which batteries are tested using such standard
procedures as dynamic stress test (DST) and simplified federal urban driving schedule
(SFUDS) in which the discharge peak occurs over a period of only 8 s.
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Interfacial electric equilibrium.—Likewise, according to Eq. 60 or 62, the condition for
interfacial electric equilibrium (i.e., φ−km=〈φk〉

k) can be stated as
akm
Rkm

 → ∞ [84]

or
σ
r2
s

 or 
κ
r2
s

 → ∞ [85]

for the solid active material and electrolyte, respectively. Clearly, a large conductivity and a
small pore size would support the electrical equilibrium at the electrode/electrolyte interface.
The left-hand side of Eq. 85 represents the inverse of a volume resistance (Ω cm3), the
physical significance of which can be explained by the Wagner number41 based on the
microscopic length scale. We can define the Wa number as the ratio of the interfacial
electrochemical kinetics resistance, Rk, to the microscopic ohmic resistance across the
active material particles or the electrolyte-occupied pores, Rkm

Wa = 
Rk

Rkm
  ~ 

(σ or κ)(∂η /∂in)
rs

[86]

where the characteristic kinetics resistance is taken as the tangent to the polarization curve
described by the Butler-Volmer equation. Apparently, Wa defined by Eq. 86 is a
quantitative measure of the relative magnitude of interfacial electrical non-equilibrium as
compared to the kinetic surface overpotential; in other words, for Wa«1, interfacial
potential non-equilibrium would become too significant to be neglected.

In high current situations, Tafel kinetics is a good approximation and so Eq. 86 for the
electrolyte phase can be simplified to

Wa = 
 


 
RT

αF
 
 


 
κ

inrs
[87]

where the first term is roughly a constant (approximately equal to 0.026 V-1 at room
temperature) and thus the second term controls the magnitude of Wa. Furthermore, noting
that the transfer current density in is related to the cell current density i through a
geometrical factor, i.e., akmin ~ i/Le as can be seen from Eqs. 55 and 59, one can then
recast Eq. 87 as

Wa = 
 


 
RT

αF
 
 



 

κLe

i  r
2
s

[88]

which is the ratio of the volume interfacial kinetics resistance (RTLe/αFi) to the volume
ohmic resistance (r2

s/κ) appearing in Eq. 85 characterizing interfacial electrical equilibrium.
It is clear from Eq. 88 that Wa is smaller than unity in cases of resistive electrolytes and/or
high current densities, indicative of the significance of the microscopic ohmic drop in the
vicinity of the interface. For a typical battery electrode with the particle size rs~10 µm and
the electrode thickness Le~1 mm, Wa is then dependent only on the conductivity and
current density. For lead-acid batteries where the ionic conductivity in the electrolyte is
around 10-2 S/cm, Wa is estimated to be less than 0.026 for current densities up to 1
A/cm2. This shows that interfacial electric equilibrium is usually a good assumption in
aqueous electrolyte batteries. However, for solid-phase electrolytes such as those used in
plastic lithium ion batteries, the electrolyte conductivity is on the order of 10-3 S/cm,40 and
hence Wa is equal to 0.26 for the current density of 1 A/cm2. As such, the electrical
equilibrium on the electrolyte side of the electrode/electrolyte interface may break down.
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Likewise, in semiconductor active materials (e.g. NiOOH), the solid conductivity can be as
low as 10-5 S/cm and so the Wa is around 26 in this case for the current density of 1
A/cm2. Clearly, the microscopic ohmic drop in semiconductor active materials is not
negligible and must be taken into account in cell models.

For thin film batteries where Le is less than 0.1 mm,20, 42 the threshold of current
densities for interfacial electrical non-equilibrium becomes as low as 1 A/cm2 for aqueous
electrolytes and 0.1 A/cm2 for solid-phase polymer electrolytes, respectively. These are
common conditions encountered in practice.

Macro-homogeneous models.—In this subsection, we show how the present model
reduces to previous macro-homogeneous models under interfacial chemical and electrical
equilibrium. Two scenarios are examined separately. One is that the ionic species exists
only in one phase (either solid electrode material or electrolyte), so that the macroscopic
species and charge conservation equations are given by Eq. 41 along with the interfacial
balance given by Eq. 49. Combination of the two equations leads to:

 
∂(εk〈ck〉

k)
∂t  + ∇⋅(ε k 〈ck〉

k〈vk〉
k) = ∇⋅[( Deff

k  + Da)∇〈 ck〉
k]

- ase 
 


 
∑

j

sj
njF

i−nj  - ∇⋅ (
tk
zF〈 ik〉) [89]

where 〈 ik〉  is the superficial current density through phase k, and the interfacial transfer
current density i−

nj is evaluated via the Butler-Volmer equation using the volume-averaged
concentration 〈ck〉

k and potential 〈φk〉
k because interfacial chemical and electrical

equilibrium holds true. Similarly, the macroscopic charge balance equations can be
rewritten as

∇⋅(σ eff∇〈φ s〉
s) + ase ∑

j
i−nj = 0 [90]

and

∇⋅(κ eff∇〈φ e〉
e) + ∇⋅(κ eff

D ∇ ln 〈ci
e〉

e) - ase ∑
j

i−nj = 0 [91]

for the solid and solution phases, respectively. Equations 89 through 91 constitute a
complete set of governing equations for three unknowns: species concentration 〈ck〉

k, solid
potential 〈φs〉

s, and electrolyte potential 〈φe〉
e, whereas the interfacial transfer current

density is calculated by the Butler-Volmer equation as a function of 〈ck〉
k, 〈φs〉

s, and 〈φe〉
e.

The superficial current density is determined in terms of either potential gradient in phase k
or the interfacial transfer current density. This mathematical system is the basis for previous
macro-homogeneous models for a wide variety of battery systems.

In many fuel cell systems, the species exists both in the electrolyte as a charged ion and in
the gas phase as a neutral species. One can then add up the macroscopic conservation
equations for the electrolyte and gas phases and make use of the interfacial balance to obtain
the following

 
∂(εe〈ce〉

e)
∂t  + ∂(εg〈cg〉g)

∂t  = ∇⋅[( Deff
e ∇〈 ce〉

e] + ∇⋅[( Deff
g ∇〈 cg〉g] - ase 

 


 
∑

j

sj
njF

i−nj  - ∇⋅ (
te
zF〈 ie〉)

[92]
where the interfacial species transfer terms between phases e and g have been canceled out
and convective terms neglected for clarity. Equation 92 is general and does not require
interfacial equilibrium conditions. However, in order to render Eq. 92 for a single
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unknown, one must invoke the chemical equilibrium condition, i.e., 〈cg〉g = H〈ce〉
e, where

H is a Henry's constant. Otherwise, there are too many unknowns contained in Eq. 92,
i.e., 〈cg〉g and 〈ce〉

e. Prins-Jansen et al.15 argued that without making the above-mentioned
chemical equilibrium assumption, Eq. 92 can be reduced for the single variable defined as

〈c〉  = εe〈ce〉
e + εg〈cg〉g [93]

where 〈c〉  can be interpreted as the mixture concentration in both electrolyte and gas phases.
But, this approach does not ultimately circumvent the problem associated with too many
unknowns because one always needs to determine 〈ce〉

e and 〈cg〉g individually from 〈c〉 .
Therefore, Equation 92 along with the equilibrium condition essentially represents the
macro-homogeneous theory for porous electrodes previously derived by Prins-Jansen et
al.15 for molten-carbonate fuel cells.

New features of the present model —In comparison to the previous models for porous
electrodes of batteries and fuel cells, some new features of the present model can be
summarized as follows:
1. In situations where the interfacial equilibrium (chemical and/or electrical) breaks down
on the electrolyte side, as identified earlier in the present section, all previous macro-
homogeneous models become invalid, whereas the present model provides the only model
capable of distinguishing the interfacial values from their phase-averaged counterparts and
therefore able to address such non-equilibrium problems. Work is ongoing to utilize the
present model to simulate high-current charge and discharge.
2. In cases where there exists interfacial equilibrium in the electrolyte phase but not in the
solid electrode phase as occurring in most insertion batteries, the present model is, in
principle, similar to previous macro-homogeneous models extended to account for solid
state diffusion, notably the Ni-Cd model of De Vidts and White,8 the Ni-MH model of
Paxton and Newman,10 and the Li-ion models of Doyle et al.39 and Fuller et al.11 There is,
however, a slight difference in the way of accounting for solid state diffusion. While the
previous works used either numerical (e.g. Ref. 8) or analytical (Refs. 10, 11 and 39)
solutions to a partial differential equation for microscopic species diffusion within solid
particles, the present model uses the diffusion length concept. In the case of perfectly
spherical particles, previous approaches are exact, while the present treatment is only
approximate. But the approximation thus introduced is quite acceptable as demonstrated by
a detailed comparative study to be reported in Part 2.43 In the case of irregularly shaped
particles as found in reality, the previous numerical and analytical approaches become
impossible, whereas the present model still gives good approximations. Computationally,
the present model utilizing the diffusion length is most economical among all the
approaches, thus allowing for efficient simulation of complex discharge and charge
schedules and driving cycles.

Conclusions

A micro-macroscopic coupled model of electrochemical kinetics and transport phenomena
occurring in batteries and fuel cells has been developed utilizing the technique of volume
averaging. The model accounts for the effects of microscale and interfacial non-equilibrium
processes on the macroscopic species and charge transfer. It is shown that the solid state
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diffusion, ohmic resistance in resistive active materials and electrolytes, and interface
passivation can all be incorporated in the present model in a consistent manner. This will
ultimately allow for the integration of detailed chemistry and morphology of the
electrode/electrolyte interface into a battery behavior model.

Application of the present model to Ni-Cd and Ni-MH batteries is described in detail in a
companion paper.43 Efforts are underway to apply the model to simulate high power,
rapidly pulsed discharge and charge batteries where interfacial non-equilibrium and thermal
transport are prominent and operate concurrently. In addition, the present model capable of
including a gas phase will be used to study fundamental mechanisms for overcharge or
overdischarge through gas generation and recombination processes.
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List of Symbols

A total interfacial area, cm3

a specific interfacial area, cm2/cm3

B body force vector, N/cm3

ck concentration of species in phase k, mol/cm3

ckm interfacial concentration of species in phase k at k-m interface, mol/cm3

c- km area-averaged concentration of species over k-m interface, mol/cm3

〈ck〉
k volume-averaged concentration of a species over phase k, mol/cm3

D diffusion coefficient of species, cm2/s
Da dispersion coefficient, cm2/s
F Faraday's constant, 96,487 C/mol
f± mean molar activity coefficient of the electrolyte
I volumetric interfacial current density, A/cm3

ik current density in phase k, A/cm2

inj transfer current density of reaction j, A/cm2

i0j exchange current density of reaction j, A/cm2

Jd
km interfacial species transfer rate due to diffusion, mol/cm3·s

J
Γ
km interfacial species transfer rate due to interface movement, mol/cm3·s

K absolute permeability of porous electrode
krk relative permeability of phase k
Le thickness of electrode, cm
lkm diffusion length of species from k-m interface into phase k, cm
Mz

j symbol representing the chemical formula of species with a charge number of z
in reaction j

Md
km interfacial momentum transfer rate due to diffusion, g/cm2·s2

M
Γ
km interfacial momentum transfer rate due to interface movement, g/cm2·s2
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MW molecular weight of species, g/mol
nk normal unit vector pointing outward from phase k
Nk molar flux of species in phase k, mol/cm2·s
nj number of electrons transferred in reaction j
p pressure, Pa
Q charge capacity of electrode, C/cm3

Qo maximum charge capacity of electrode, C/cm3

R universal gas constant, 8.3143 J/mol·K
Rkm electrical resistance from k-m interface to the bulk of phase k, Ω·cm2

r radial coordinate, cm
rkm production rate of species at k-m interface, mol/cm3·s
ro radius of cylindrical substrate, cm
rs radius of cylinder or sphere of electrode active material, cm
sj stoichiometric coefficient of species in reaction j
T absolute temperature of the cell system, K
t time, s
tk transference number of species in phase k with respect to a reference velocity
toi transference number of cation or anion with respect to the solvent velocity
Uj open-circuit potential of reaction j, V
Vk volume of phase k in the REV, cm3

Vo volume of the REV in porous medium, cm3

vk reference velocity of phase k, cm/s
Wa Wagner number
w−nkm average normal velocity of the k-m interface relative to phase k, cm/s
x x- coordinate, cm
z charge number of species

Greek symbol

αaj, αcj anodic and cathodic transfer coefficients for reaction j
εk volume fraction of phase k in the REV
εo porosity of electrode
η j surface overpotential of electrode reaction j, V
κ conductivity of an electrolyte, S/cm
κD diffusion conductivity of species, A/cm
ρ density of species, g/cm3

σ conductivity of the active material in the electrode, S/cm
µ dynamic viscosity, kg·cm/s
ν moles of ions into which a mole of electrolyte dissociates
ν+, ν− numbers of cations and anions into which a mole electrolyte dissociates
τ stress tensor, N/cm2

φk potential in phase k, V
φk m surface potential of phase k at k-m interface, V
φ−km average surface potential of phase k over k-m interface, V
〈φk〉k volume-averaged potential over phase k, V
Ψk general quantity in phase k
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Subscript

b substrate
e electrolyte
g gas phase
s solid phase

Superscript

eff effective
o initial
overbar_

average over interface
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